VIP STUDY сегодня – это учебный центр, репетиторы которого проводят консультации по написанию самостоятельных работ, таких как:
  • Дипломы
  • Курсовые
  • Рефераты
  • Отчеты по практике
  • Диссертации
Узнать цену

Литературный обзор конструкции установок ОРЭ

Внимание: Акция! Курсовая работа, Реферат или Отчет по практике за 10 рублей!
Только в текущем месяце у Вас есть шанс получить курсовую работу, реферат или отчет по практике за 10 рублей по вашим требованиям и методичке!
Все, что необходимо - это закрепить заявку (внести аванс) за консультацию по написанию предстоящей дипломной работе, ВКР или магистерской диссертации.
Нет ничего страшного, если дипломная работа, магистерская диссертация или диплом ВКР будет защищаться не в этом году.
Вы можете оформить заявку в рамках акции уже сегодня и как только получите задание на дипломную работу, сообщить нам об этом. Оплаченная сумма будет заморожена на необходимый вам период.
В бланке заказа в поле "Дополнительная информация" следует указать "Курсовая, реферат или отчет за 10 рублей"
Не упустите шанс сэкономить несколько тысяч рублей!
Подробности у специалистов нашей компании.
Код работы: W005844
Тема: Литературный обзор конструкции установок ОРЭ
Содержание
ВВЕДЕНИЕ



Нефть и газ превратились в главные источники энергетической мощи человеческого общества и в важнейший источник химического сырья. Обеспеченность государства нефтегазовым сырьём предопределяет уровень экономического развития страны и технического прогресса.

Дальнейшее развитие нефтегазодобывающей промышленности связано с новым этапом, главными особенностями которого являются необходимость вовлечения в разработку всё большего числа мелких месторождений, месторождений со значительными глубинами скважин, месторождений с высоковязкими нефтями, с нефтями, насыщенными агрессивными средами. Оно связано со всё большим освоением месторождений на Крайнем Севере. Для развития отрасли на этом этапе решающее значение приобретают резкое увеличение нефтегазоотдачи пластов и доразработка многочисленных истощенных и разрабатываемых в настоящее время месторождений [1].

По наиболее широко используемой в мировой практике классификации тяжелыми нефтями считаются углеводородные жидкости с плотностью 920–1000 кг/м3 и вязкостью от 10 до 100 мПа·с, а природными битумами – слаботекучие или полутвердые смеси преимущественно углеводородного состава с плотностью более 1000 кг/м3 и вязкостью выше 10000 мПа·с. Промежуточную группу между битумами и тяжелыми нефтями образуют так называемые сверхтяжелые нефти с вязкостью от 100 до 10000 мПа·с и плотностью около или несколько более 1000 кг/м3. Тяжелые и сверхтяжелые нефти многие авторы объединяют под общим названием – тяжелые нефти или высоковязкие нефти[2].

Вязкость в пластовых условиях для месторождений тяжелой нефти варьируется от относительно небольших значений 20 мПа·с до величин вязкости близких к значениям природного битума (9000 мПа·с). При этом большинство месторождений имеют вязкость в пределах 1000 мПа·с.

Обычно коллекторы месторождений тяжелых нефтей характеризуются довольно высокими емкостными свойствами. Значения пористости могут лежать в пределах от 20% до 45%. При этом для коллекторов характерна расчлененность и значительная неоднородность фильтрационных свойств (проницаемость может изменяться от сотых долей до нескольких единиц мкм2).

Залежи тяжелых нефтей встречаются на всех диапазонах глубин от 300 метров до глубин свыше 1500 метров. При этом доля балансовых запасов высоковязких нефтей расположенных на глубинах свыше 1500 метров составляет только 5% всех запасов. Наиболее значимые по запасам месторождения расположены в диапазонах глубин 1000–1500 метров. Очень часто месторождения высоковязкой нефти представляют собой сложную многопластовую систему, в которой различные этажи нефтеносности имеют не только различные емкостно-фильтрационые свойства, но и отличные друг от друга свойства пластового флюида [2].

Основные месторождения природных битумов располагаются на внешних бортах мезозой-кайнозойских краевых прогибов, примыкающих к щитам и сводам древних платформ (Канадский, Гвианский щиты, Оленекский свод). Месторождения могут быть пластовые, жильные, штокверковые. Пластовые месторождения (до 60 м) охватывают, нередко, многие тысячи квадратных километров (Атабаска, Канада).

Жильные и штокверковые месторождения формируются на путях вертикальной миграции углеводородов по тектоническим трещинам, зонам региональных разрывов. Крупнейшие жильные тела в Турции (Харбол, Авгамасья) достигают длины 3,5 км при мощности 20 – 80 м и прослеживаются до глубины 500 м. Покровные залежи образуются за счет излившихся нефтей. Известны так называемые асфальтовые озера (Охинское на Сахалине, Пич-Лейк на о. Тринидад, Гуаноко в Венесуэле)[3].

Природные битумы генетически представляют собой, в различной степени, дегазированные, потерявшие легкие фракции, вязкие, полутвердые естественные производные нефти (мальты, асфальты, асфальтиты). Кроме повышенного содержания асфальтено-смолистых компонентов (от 25 до 75% мас.), высокой плотности, аномальной вязкости, обусловливающие специфику добычи, транспорта и переработки, природные битумы отличаются от маловязких нефтей значительным содержанием серы и металлов, особенно пятиокиси ванадия V2O5 и никеля (Ni) в концентрациях, соизмеримых с содержанием металлов в промышленных рудных месторождениях в России и странах СНГ (V2O5 до 7800г/т) и за рубежом (V2O5 до 3500 г./т). Наиболее обогащены указанными компонентами природные битумы месторождений Волго-Уральской битумонефтегазоносной провинции. Так, в битумах (мальта-высокосмолистая нефть) содержание серы достигает 7,2% мас., a V2O5 и Ni соответственно 2000 г./т и 100 г./т. В асфальтитах Оренбуржья концентрация серы превышает 6% – 8% мас., a V2O5 и Ni соответственно 6500 г./т в 640 г./т. Таким образом, месторождения природных битумов необходимо рассматривать не только как источник мономинерального сырья для получения только нефти и продуктов её переработки.

В России основные перспективы поиска природных битумов, связаны с породами пермских отложений центральных районов Волго-Уральской битумонефтегазоносной провинции, т.е. как раз на той территории, где запасы обычной нефти выработаны в наибольшей мере по сравнению с другими нефтедобывающими регионами России. Почти 36% запасов битумов России находятся на территории Татарстана, который по этому показателю занимает ведущее место в стране. Большая часть скоплений битумов в пермских отложениях Татарии приурочена к пластам, залегающим на глубине от 50 до 400 м и охватывающим почти весь разрез пермской системы. Битумы тяжелые (плотность 962,6–1081 кг/м3), высоковязкие (до десятков и сотен тысяч мПа·с), высокосмолистые (19,4–48,0%) и сернистые (1,7–8,0%).Битумная часть пермских отложений представляет собой сложнопостроенную толщу карбонатных и терригенных коллекторов, образующих природные резервуары с широким диапазоном коллекторских свойств. Другие регионы сосредоточения природных битумов представлены территориями Самарской, Оренбургской областей, Северного Сахалина, Северного Кавказа, Республики Коми и некоторыми областями Сибири [3].

Современный этап развития нефтедобычи характеризуется широким применением механизированного способа подъёма нефти из скважин. 

Характерными особенностями развития нефтяной промышленности в нашей стране за последнее десятилетие являются увеличение обводнённости добываемой нефти, а также снижение дебита нефтедобывающих скважин.

Сегодня техника и технология одновременно-раздельной эксплуатации (ОРЭ) нескольких пластов переживают второе рождение. Системы ОРЭ появились достаточно давно, но по-настоящему востребованными оказались только теперь. В первую очередь, конечно, это связано с существенным изменением цен на нефть, равно как и на услуги, и оборудование для подъема и подготовки нефти. Надо отметить, что нефтяные компании сегодня уже не говорят о том, что нужно уменьшать затраты при закупке оборудования – возникло понимание необходимости рассматривать весь комплекс показателей оборудования и технологий, заботясь не только о сокращении капитальных, но и эксплуатационных затрат. Этот подход заставил многие нефтяные компании вспомнить о тех технологиях, которые были известны достаточно давно.

Расширенное внедрение технологии ОРЭ позволяет решать очень многие вопросы и ставить новые задачи перед теми, кто занимается разработкой этих технологий и техники, и перед теми, кто внедряет эти технологии.

Первые образцы оборудования для ОРЭ созданы в СССР в 1930-х годах, работы в этом направлении были продолжены после войны

Широкие научно-исследовательские и опытно-конструкторские работы начаты под руководством Н.К.Байбакова с конца 1950-х годов (Татария, Башкирия, Грозный, Куйбышев). Н.К.Байбаков в то время курировал всю нефтяную промышленность, и при его фактически каждодневном участии направление стало развиваться очень активно.

	Задачи, стоящие перед ОРЭ: 

- повысить нефтеотдачу и дебит скважины за счет дополнительного вовлечения в разработку низко проницаемых прослоев;

- увеличить степень охвата и интенсивность освоения многопластового месторождения, путем раздельного вовлечения в разработку отдельных тонких разно проницаемых пластов-прослоев;

- сократить капитальные вложения на бурение скважин;

- интенсифицировать процесс регулирования отборов и закачки во времени и по разрезу скважины;

- увеличить рентабельный срок разработки месторождения;

- снизить эксплуатационные затраты;

- обеспечить учет добываемой продукции из каждого пласта и закачиваемого в него рабочего агента;

- оперативно управлять полем пластовых давлений, регулировать направления и скорости фильтрации пластовых флюидов;

- предотвратить вредное воздействие растворов глушения на ПЗП, отсекать пласты (изолировать скважинную установку от пласта) без отрицательного техногенного воздействия на них;

- уменьшить вероятность осложнений гидрат образования, отложения асфальтенов, смол и парафинов, высоких значений температуры, газового фактора, обводненности и вязкости добываемой продукции, повышенного содержания в ней механических примесей, солей, серы и коррозионно-активных компонентов;

- эксплуатировать скважину с негерметичной эксплуатационной колонной;

- использовать газ из газовой шапки или газовых пластов для организации бескомпрессорного (БКГ) или внутрискважинного газлифта (ВСГ) проводить совместную разработку нефтяной оторочки и газовой шапки без образования газовых конусов;

- разрабатывать водоплавающие залежи, предупреждая образование водяных конусов.

	















Цель работы

	Повышение коэффициента извлечения нефти при ее вытеснении за счет обоснования применения тепла передаваемого ЭНЦ на флюиды и породы вышележащего пласта.	

	Основные задачи исследования:

	- Провести литературный обзор и патентный анализ  компоновок ОРЭ;

	- Провести обзор существующих методов воздействия на нефтяные пласты с целью увеличения нефтеотдачи;

	- Разработка компоновки ОРЭ и ее температурный расчет;

	- Анализ влияния теплообменника на свойства нефти.

	Научная новизна:

В данной работе разработана компоновка для одновременно-раздельной эксплуатации, которая рассматривает возможность подогрева верхнего пласта. Компоновка состоит из штангового насоса, теплообменника, пакера и электроцентробежного насоса. Подогретая нефть от ЭЦН с нижнего пласта Для этого под штанговым насосом установлен теплообменник в который поступает подогретая нефть от ЭЦН с нижнего пласта.





































1. Литературный обзор конструкции установок ОРЭ

Одновременно-раздельная эксплуатация (ОРЭ) позволяет реализовать систему раздельной разработки объектов многопластового месторождения одной сеткой скважин, а также является одним из методов регулирования разработки месторождения при экономии ресурсов [4]. 

Схема ОРЭ пластов по назначению классифицируется на три группы:

- ОРЭ пластов; 

- одновременно-раздельная закачка рабочей жидкости;

- ОРЭ пласта и закачки рабочего агента.

Раздельно эксплуатируют пласты способами: 

- оба пласта фонтанным (фонтан-фонтан); 

- один пласт фонтанными, а другой — механизированным (фонтан-насос, причем это означает, что нижний пласт эксплуатируется фонтаном);

- оба пласта механизированным (насос-насос).

В зависимости от условий применения каждой метод ОРЭ может быть осуществлен в нескольких вариантах.

Оборудование для ОРЭ пластов состоит из наземных и внутрискважинных узлов. Наземные узлы оборудования, также как фонтанная арматура, насосные установки и др. предназначены для герметизации устья скважин, передачи движения и обеспечения регулирования режимных параметров.

Подземные узлы обеспечивают герметизацию пластов, отбор (или закачку) заданного объема жидкости и его подъем на поверхность. Серийно выпускаемое оборудование, обязательный элемент которого — пакер, обеспечивает возможность эксплуатации пластов по одной колонне труб. Для скважин с добычей нефти по схеме фонтан-фонтан известны установки двух типов: с двумя параллельно расположенными рядами насосно-компрессорных труб типа УФ2П (УФЭ, УФП, УФП2) и с концентрически расположенными рядами НКТ — установка УВЛГ, применяемая также для внутрискважинной газлифтной эксплуатации.



1 — пакер; 2 — насосно-компрессорные трубы; 3, 4  малогабаритные пусковые клапаны с принудительным открытие соответственно для первого и второго рядов труб; 5 — тройник фонтанной арматуры (для сообщения с затрубным пространством); 6 — двухрядный сальник; 7 — тройники для направления продукции в выкидные линии.



Рисунок 1.1 Схема установки для раздельной эксплуатации двух пластов с двумя параллельными рядами труб по схеме фонтан-фонтан

Для раздельной эксплуатации двух пластов по схеме фонтан-насос и насосфонтан выпускаются установки с использованием штангового скважинного насоса и погружного центробежного насоса. В установках штангового типа одна из параллельно спущенных колонн НКТ берется большого диаметра, допускающего спуск вставного насоса. Для того чтобы во время спуска или подъема колонны НКТ не происходило зацепления муфт, над ними устанавливаются конические кольца [2]. Схема с применением погружного центробежного насоса представляет более сложную конструкцию подземного оборудования.

Для раздельной эксплуатации двух пластов по схеме насос-насос используются штанговые установки типа УТР на месторождениях с низким газовым фактором нижнего пласта, УНР — с резко отличающимися давлениями пластов и УТРП — с раздельной транспортировкой продукции каждого пласта.

Установка УТР  состоит из наземного и подземного оборудования. Наземное оборудование включает в себя оборудование устья и станок-качалку, применяемые при обычной добыче нефти скважинными штанговыми насосами из одного пласта. Подземное оборудование выпускается в невставном  и вставном  исполнениях и включает в себя разобщающий пакер, нижний насос обычного типа ПНСВ1 с замковой опорой или НСН2. Насос для эксплуатации верхнего пласта — специальный, имеющий неподвижный плунжер и подвижный цилиндр. Работа верхнего и нижнего насосов синхронна. Возвратно-поступательное движение от станка-качалки передается через колонну насосных штанг цилиндру верхнего насоса, а затем через специальную штангу — нижней колонне штанг и плунжеру нижнего насоса. Жидкость, подаваемая нижним насосом, проходит через продольный канал в посадочном конусе верхнего насоса и попадает в подъемные трубы над верхним насосом [1]. Жидкость, откачиваемая верхним насосом, через полый шток, всасывающий и нагнетающий клапаны, поступает в колонну подъемных труб, где смешивается с жидкостью из нижнего пласта [5].





а — УТР невставного исполнения; б — УТР вставного исполнения; в — 1УНР вставного исполнения; г  1УНР невставного исполнения; 1 - оборудование устья; 2 — станок-качалка; 3 — верхний насос; 4  опора; 5 — нижний насос; 6 — пакер; 7 — автосцеп; 8— автоматический переключатель пластов.



Рисунок 1.2 Установки для ОРЭ двух пластов скважинами, оборудованными штанговыми скважинными насосами



Установки с использованием насосов типа НСН2 более производительны. В установке типа 1УНР  при ходе плунжера вверх происходит заполнение цилиндра насоса сначала жидкостью пласта с меньшим давлением, а затем (после прохождения плунжером отверстия на боковой поверхности цилиндра) — жидкостью пласта с высоким давлением.

При ходе плунжера вниз жидкость обоих пластов нагнетается в НКТ. Поступление жидкости из верхнего и нижнего пластов, разобщенных пакером, на прием насоса через канал «б» и на боковой поверхности через отверстие «а» регулируется с помощью переключателя пластов [5].



Методы увеличения притока нефти

Проблема разработки месторождений тяжелых высоковязких нефтей заключается в том, что естественные температурные условия в пласте практически не обеспечивают необходимой подвижности нефти при ее фильтрации к забоям добывающих скважин. 

При тепловых методах повышения нефтеотдачи пластов коллектор подогревается, чтобы снизить вязкость нефти и/или испарить ее. В обоих случаях нефть становится более подвижной и ее можно более эффективно направлять к добывающим скважинам. Помимо добавочного тепла в этих процессах создается движущая сила (давление). Существует два перспективных метода термического ПНП: нагнетание перегретого водяного пара и метод внутрипластового движущегося очага горения.

Приток нефти из пласта может быть увеличен путем:

внутри пластовым горением;

закачки пара в пласт;

нагрева токами высокой частоты.



Внутри пластовое горение



Процесс внутрипластового горения (ВГ) - способ разработки и метод повышения нефтеотдачи продуктивных пластов, основанный на использовании энергии, полученной при частичном сжигании тяжелых фракций нефти (кокса) в пластовых условиях при нагнетании окислителя (воздуха) с поверхности [3]. Это сложное, быстро протекающее превращение, сопровождаемое выделением теплоты, используется для интенсификации добычи нефти и увеличения нефтеотдачи в основном на залежах нефти с вязкостью более 30 мПа?с.

Основа горения – экзотермическая окислительно-восстановительная реакция органического вещества с окислителем. Для начала реакции необходим первичный энергетический импульс, чаще всего нагревание нефти. Поэтому процесс ВГ начинается с поджога некоторого количества нефти с помощью забойного нагревающего устройства (электрических или огневых горелок). После образования устойчивого очага горения в пласт закачивают через нагнетательную скважину окислитель или смесь окислителя и воды. Кислород соединяется с топливом (нефтью), образуя СО2 и воду с выделением тепла [5]. Предварительно разогретая порода далее нагревает движущийся через нее окислитель до температуры выше воспламенения кокса и нефти. При нагнетании окислителя разогретая зона (очаг горения), температура которого поддерживается высокой за счет сгорания части нефтепродуктов, продвигается вглубь пласта. При этом часть пластовой нефти (10-15%) сгорает и выделяющиеся в результате горения газы, пар и другие горючие продукты сгорания, продвигаясь по пласту, эффективно вытесняют нефть из пласта. Процесс автотермический, т.е. продолжается непрерывно за счет образования продуктов для горения (типа кокса) [7].

Процесс внутрипластового горения сочетает все преимущества термических методов – вытеснение нефти горячей водой и паром, а также смешивающегося вытеснения, происходящею в зоне термического крекинга, в которой все углеводороды переходят в газовую фазу [5].

Диапазон применения ВГ очень широк: на неглубоко залегающих месторождениях и на значительных глубинах.

Экспериментальные работы в сочетании с теоретическими исследованиями позволили сформулировать основные закономерности процесса ВГ:

-  внутрипластовое горение может проявляться в трех разновидностях: сухое (СВГ), влажное (ВВГ) и сверхвлажное (СВВГ);

-  определяющим параметром для ВВГ и СВВГ является водовоздуш-ный фактор (ВВФ) – отношение объема закачиваемой в пласт воды к объему закачиваемого в пласт воздуха;

-  интенсивные экзотермические реакции окисления нефти происходят в узкой зоне пласта, называемой фронтом горения;

-  на фронте горения при сухом и влажном процессах температура в среднем может составить 400-600°С, процесс сверхвлажного горения протекает при температурах 200-250°С:

-  увеличение ВВФ позволяет: повысить скорость продвижения по пласту тепловой волны, снизить расход воздуха на выжигание пласта и на добычу нефти, уменьшить концентрацию сгорающего в процессе химических реакций топлива;

-  на процессе внутрипластового горения существенное влияние оказывают такие параметры, как пластовое давление, тип породы-коллектора, тип нефти, начальная нефтенасыщенность.

Различают два основных варианта внутрипластового горения – прямоточный и противоточный.

Прямоточное внутрипластовое горение – это процесс теплового воздействия на пласт, при котором фильтрация окислителя и распространение фронта горения происходит в направлении вытеснения нефти – ?т нагнетательной скважины к добывающей. Скорость движения фронта горения регулируется типом и количеством сгоревшей нефти и скоростью нагнетания воздуха [8].

Если же повышают температуру призабойной зоны добывающей скважины и очаг горения возникает в ее окрестности, то фронт горения распространяется к нагнетательной скважине, т.е. в направлении, противоположном направлению вытеснения нефти. Такой процесс называется противоточпым горением. Он используется, как правило, только в том случае, если невозможно осуществить прямоточный процесс горения, например на залежах с неподвижной нефтью или битумом [5].

При внутрипластовом горении действует широкий комплекс механизмов извлечения нефти: вытеснение ее газообразными продуктами горения, водой, паром; дистилляция легких фракций нефти; разжижение нефти под действием высокой температуры и углекислого газа. Образованные за счет дистилляции легкие фракции нефти переносятся в область впереди теплового фронта и, смешиваясь с исходной нефтью, играют роль оторочки растворителя.

В процессе прямоточного горения температура и профиль насыщения флюидами в пласте развиваются согласно характерным зонам. Прямоточный процесс ВГ включает: выжженную зону, содержащую окислитель (воздух); зону горения, содержащую кокс; зону испарения (многофазную зону), содержащую пар, газы, воду, легкие углеводороды: зону конденсации, или трехфазную зону, содержащую нефть и газ; зону пласта, не охваченную воздействием.







а – температурные зоны в пласте, б – зоны распространения процесса: 1,2 – нагнетательная и добывающая скважины; 3.4,7.8 – зоны: соответственно выжженная, испарения, конденсации и пара; 5 – легкие углеводороды; 6 – нефтяной вал; 9 – фронт горения



Рисунок 1.3 - Схема процесса прямоточного внутри пластового горения



Зона 1. В этой области пласта фронт горения уже прошел, она состоит практически из сухой породы без нефти. В порах фильтруется окислитель. Температура в ней достаточно высокая, плавно увеличивается в направлении вытеснения. По мере фильтрации в этой зоне происходит нагревание закачиваемого окислителя за счет контакта с нагретым коллектором.

Зона 2 – зона горения и коксообразования. В ней происходят высокотемпературные окислительные процессы, т.е. горение остаточного коксоподобного топлива. Температура в этой зоне достигает своего максимального значения, которая обычно составляет 350-600°С. В результате горения образуются углекислый газ, окись углерода и вода. Тепло, выделяемое в процессе горения, аккумулируется в следующей зоне и затем отдается потоку окислителя.

В зоне 2 под действием высокой температуры происходит крекинг и окислительный пиролиз фракций нефти, которые не были вытеснены к этому времени, с образованием жидких и газообразных продуктов с последующим растворением в нефти впереди фронта горения. Из тяжелых остатков в результате сложных термохимических реакций образуется коксоподобное вещество, которое служит топливом для поддержания процесса внутрипластового горения, а газообразные и жидкие углеводороды потоком газов горения и пара, образовавшегося из реакционной воды, вытесняются в направлении фильтрации. Углекислый газ, образующийся при горении, растворяется в воде и в нефти, повышая их подвижность.

В зоне 3 происходит испарение воды, содержащейся в пласте в свободном и связанном состоянии. При испарении воды с температурой в зоне 150-200°С происходит процесс перегонки нефти в потоке горячих паров воды и газов. Поток способствует испарению при этой температуре более тяжелых фракций нефти, чем при обычном кипении. Этими процессами определяется многофазность зоны испарения, где одновременно присутствуют пар, газы, вода и легкие углеводороды.

В начале зоны 4 происходит конденсация паров воды и углеводородных газов, образованных в зоне 3. Конденсирующаяся влага образует зону повышенной водонасыщенности. Кроме того, из сконденсировавшихся паров воды может возникнуть оторочка горячей воды (вал горячей воды), которая вместе с газообразными продуктами вытесняет нефть из пласта. Впереди оторочки (вала) горячей воды, за счет конденсации газообразных углеводородов, образуется нефтяной вал (зоны 5,6), который вытесняет первичную нефть в направлении фильтрации жидкостей (рис.34).

При прямоточном горении ввиду малой теплоемкости закачиваемого окислителя, основная доля выделившегося тепла остается позади фронта горения и не участвует в процессе вытеснения нефти. Как видно из схемы распределения температуры в пласте в процессе горения (рис.34а), впереди фронта горения температура пласта довольно резко снижается, вплоть до пластовой температуры, так как переброшенное потоками газа тепло расходуется на нагревание породы и содержащейся в ней нефти. А позади фронта, наоборот, из-за рассеивания тепла в окружающие пласт породы наблюдается плавное ее снижение. Поэтому размер прогретой области впереди фронта существенно меньше, чем позади фронта.

Метод внутрипластового горения сопряжен с большими недостатками. Из-за высокой температуры выходящих газов и содержания в них большого количества азота, оксида углерода, сернистого и углекислого газов, а иногда и сероводорода, возникает необходимость решения сложных технических проблем по охране окружающей среды, утилизации продуктов горения, обеспечения безопасного ведения работ, предотвращению выноса песка из скважин, образованию песчаных пробок, водонефтяных стойких эмульсий, коррозии оборудования, возможности проявления гравитационных эффектов, снижающих охват пласта тепловым воздействием [8].

Метод внутрипластового горения - один из наиболее сложных по своему механизму, условиям реализации, моделированию и прогнозу возможной эффективности. Неравномерное выгорание пласта сильно изменяет его свойства, что усложняет применение в дальнейшем каких-либо других методов извлечения остаточной нефти.

1.1.2 Закачка пара в пласт



Водяной пар благодаря скрытой теплоте парообразования обладает значительно большим теплосодержанием, чем горячая вода. Если вода при температуре 148,9°С содержит 628 кДж/кг тепла, то насыщенный пар при той же температуре – 2742 кДж/кг, т.е. более чем в 4 раза. Но это еще не означает, что пар отдаст пласту в 4 раза больше тепла, чем-то же количество воды. Если пластовая температура равна 65°С, то 1 кг воды, нагретой до 148,9°С передает пласту 356 кДж, а 1 кг пара при тех же условиях – 2470 кДж, т.е. почти в 7 раз больше. Поэтому при помощи пара в пласт можно внести значительное количество тепла в расчете на единицу веса нагнетаемого агента. Кроме того, при одинаковых условиях 1 кг пар занимает в 25-40 раз больший объем и может вытеснить наибольший объем нефти, чем горячая вода [9].

При закачке пара в нефтяной пласт используют насыщенный влажный пар, представляющий собой смесь пара и горячего конденсата. Степень сухости закачиваемого в пласт пара находится в пределах 0,3-0,8. Чем выше степень сухости пара, равная отношению массы пар к массе горячей воды при одинаковом давлении и температуре, тем больше у него теплосодержание по сравнению с горячей водой. К примеру, при давлении 10 МПа и температуре 309°С у влажного пара со степенью сухости 0,6 теплосодержание почти в 1,6 раза больше, чем у горячей воды [6].

Процесс распространения тепла в пласте и вытеснение нефти при нагнетании в пласт водяного пара является более сложным, чем при нагнетании горячей воды. Пар нагнетают в пласты через паронагнетательные скважины, расположенные внутри контура нефтеносности, извлечение нефти производится через добывающие скважины.

Механизм извлечения нефти из пласта, при нагнетании в него перегретого пара, основывается на изменениях свойств нефти и воды, содержащихся в пласте, в результате повышения температуры. С повышением температуры вязкость нефти, ее плотность и межфазовое отношение понижаются, а упругость паров повышается, что благоприятно влияет на нефтеотдачу. Увеличению нефтеотдачи также способствуют процессы испарения углеводородов за счет снижения их парциального давления. Снижение парциального давления связано с наличием в зоне испарения паров воды. Из остаточной нефти испаряются легкие компоненты и переносятся к передней границе паровой зоны, где они снова конденсируются и растворяются в нефтяном валу, образуя оторочку растворителя, которая обеспечивает дополнительное увеличение нефти. При температуре 375°С и атмосферном давлении может дистиллироваться (перегоняться) до 10% нефти плотностью 934 кг/м3.

При паротепловом воздействии (ПТВ) в пласте образуются три характерные зоны: зона вытеснения нефти паром; зона горячего конденсата, где реализуется механизм вытеснения нефти водой в неизотермических условиях, и зона, не охваченная тепловым воздействием, где происходит вытеснение нефти водой пластовой температуры [6]. Указанные зоны различаются по температуре, распределению насыщенности жидкости и механизму вытеснения нефти из пласта. Процессы, происходящие в каждой из этих зон, испытывают взаимное влияние.





зона 1 - перегретый пар; 2 зона -  насыщенный  пар; 3 зона  – горячий конденсат: 4 зона – остывший конденсат



Рисунок 1.4 - Схема распределения температуры в пласте при нагнетании в него водяного пара

Нагрев пласта вначале происходит за счет теплоты прогрева. При этом температура нагнетаемого перегретого пара вблизи нагнетательной скважины снижается (в зоне 1) до температуры насыщенного пара (т.е. до точки кипения воды при пластовом). На прогрев пласта (в зоне 2) расходуется скрытая теплота парообразования и далее пар конденсируется. В этой зоне температура пароводяной смеси и пласта будут приблизительно постоянны и равны температуре насыщенного пара (зависящей от давления), пока используется вся скрытая теплота парообразования. Основным фактором увеличения нефтеотдачи здесь является испарение (дистилляция) легких фракций остаточной нефти, образованной после вытеснения горячей водой. Размеры ее при практически приемлемых объемах закачки небольшие. В зоне 3 пласт нагревается за счет теплоты горячей воды (конденсата) до тех пор, пока температура ее не упадет до начальной температуры пласта. В зоне 4 температура пласта снижается до начальной.

Нефть вытесняется остывшим конденсатом при пластовой температуре. Часть теплоты, как и в случае нагнетания горячей воды, расходуется через кровлю и подошву пласта. Кроме того, на распределение температуры влияет изменение пластового давления по мере удаления теплоносителя от нагнетательной скважины. В соответствии с распределением температуры нефть подвергается воздействию остывшей воды, горячего конденсата, насыщенного и перегретого пара. Увеличению нефтеотдачи также способствуют процессы испарения под действием пара нагретой нефти и фильтрации части углеводородов в парообразном состоянии. В холодной зоне пары углеводородов конденсируются, обогащая нефть легкими компонентами и вытесняя ее как растворитель.

Механизм вытеснения и характер распределения температуры в пласте удобно рассматривать и в обратном к вытеснению направлении.





а – пар; б – вода; в – нефть



Рисунок 1.5 - Схема вытеснения нефти паром.



В зоне 4 фильтруется безводная нефть при пластовой температуре.

В зоне 3 температура пласта тоже равна начальной. Вытеснение нефти водой происходит при пластовой температуре. Насыщенность воды в направлении вытеснения постепенно уменьшается до значения насыщенности связанной водой.

Зона 2 – это зона горячей воды. Температура в этой зоне снижается от температуры пара до начальной пластовой. В ней фильтруется горячая вода, нагретая нефть, обогащенная легкими фракциями углеводорода, которые образовались из остаточной нефти в зоне пара и вытесняются из зоны конденсации. Здесь вытеснение нагретой нефти производится горячей водой. В этой зоне повышение коэффициента нефтеотдачи достигается за счет снижения вязкости нефти, повышения ее подвижности, усиления капиллярных эффектов.

На участке зоны 2, примыкающей к зоне 1, температура несколько ниже, чем температура парообразования. В этой зоне, размеры которой небольшие, пары воды и газообразные углеводородные фракции из-за охлаждения компенсируются и вытесняются горячей водой по направлению к добывающим скважинам.

Зоны: 1 - насыщенного пара; 2 - вытеснение нефти горячей водой; 3 - вытеснение нефти водой при пластовой температуре; 4 - фильтрация нефти при начальных условиях.

Зона 1 – это зона влажного пара, которая образуется вблизи нагнетательной скважины. В ней температура приблизительно постоянна, ее значение равно температуре парообразования воды, зависящей от давления в пласте. В этой зоне происходит испарение легких фракций из остаточной нефти.

Таким образом, увеличение нефтеотдачи пласта при закачке пара достигается за счет снижения вязкости нефти, что способствует улучшению охвата пласта воздействием: путем расширения нефти, перегонки ее паром и экстрагирования растворителем, что повышает коэффициент вытеснения.

Вязкость нефтей, как правило, резко снижается с увеличением температуры, особенно в интервале 20-80°С. Поскольку дебит нефти обратно пропорционален ее вязкости, то производительность скважин может быть увеличена в 10-30 раз и более.

Высоковязкие нефти со значительной плотностью обладают большим темпом снижения вязкости, остаточная нефтенасыщенность их уменьшается более резко, особенно при температурах до 150°С. С повышением температуры вязкость нефти уменьшается более интенсивно, чем вязкость воды, что также благоприятствует повышению нефтеотдачи.

В процессе закачки пара нефть в зависимости от состава может расширяться, за счет чего появляется дополнительная энергия для вытеснения пластовых жидкостей.

В процессе паротеплового воздействия возникают и такие проблемы, как влияние высокой температуры на обсадные трубы, НКТ и другое внутрискважинное оборудование. Поэтому нагнетательные скважины должны заканчиваться и обустраиваться с учетом работы при высоких температурах.

Гравитационные эффекты могут привести к тому, что паром будет охвачена только верхняя часть пласта. Низкие темпы закачки пара невыгодны с экономической точки зрения. Потери теплоты пропорциональны перепаду температур и времени.

Нагрев токами высокой частоты

Данная технология выполняется следующим образом. Часть технологических скважин после вскрытия пласта оборудуют электродами. Обсадная колонна служит в качестве второго электрода. От наземной аппаратуры к электродам проводят кабель. Используя информацию об изменениях параметров пласта, в ходе обработки производится корректировка воздействия по программе. Мощность промышленного источника электрического тока достигает 100 кВт. Электроимпульсная обработка пласта приводит к следующим изменениям среды: происходит увеличение капилляров, разглинизация, увеличение проницаемости, выделение газа.









Электроды; 2 - нагнетательная скважина; 3 - платформа для вибросейсмического воздействия на пласт с поверхности; 4 – добывающая скважина; 5 – импульсная насосная установка; 6 – продуктивный пласт



Рисунок 1.5 - Нагрев токами высокой частоты



Электрическое воздействие на пласт токами высокого напряжения исследовано на стендах и в природных условиях[9].

Следует отметить, что между нагревом призабойной зоны с помощью.......................
Для получения полной версии работы нажмите на кнопку "Узнать цену"
Узнать цену Каталог работ

Похожие работы:

Отзывы

Незаменимая организация для занятых людей. Спасибо за помощь. Желаю процветания и всего хорошего Вам. Антон К.

Далее
Узнать цену Вашем городе
Выбор города
Принимаем к оплате
Информация
Наши преимущества:

Оформление заказов в любом городе России
Оплата услуг различными способами, в том числе через Сбербанк на расчетный счет Компании
Лучшая цена
Наивысшее качество услуг

По вопросам сотрудничества

По вопросам сотрудничества размещения баннеров на сайте обращайтесь по контактному телефону в г. Москве 8 (495) 642-47-44