VIP STUDY сегодня – это учебный центр, репетиторы которого проводят консультации по написанию самостоятельных работ, таких как:
  • Дипломы
  • Курсовые
  • Рефераты
  • Отчеты по практике
  • Диссертации
Узнать цену

Сравнительный анализ и оценка различных структур многопроцессорных ВС

Внимание: Акция! Курсовая работа, Реферат или Отчет по практике за 10 рублей!
Только в текущем месяце у Вас есть шанс получить курсовую работу, реферат или отчет по практике за 10 рублей по вашим требованиям и методичке!
Все, что необходимо - это закрепить заявку (внести аванс) за консультацию по написанию предстоящей дипломной работе, ВКР или магистерской диссертации.
Нет ничего страшного, если дипломная работа, магистерская диссертация или диплом ВКР будет защищаться не в этом году.
Вы можете оформить заявку в рамках акции уже сегодня и как только получите задание на дипломную работу, сообщить нам об этом. Оплаченная сумма будет заморожена на необходимый вам период.
В бланке заказа в поле "Дополнительная информация" следует указать "Курсовая, реферат или отчет за 10 рублей"
Не упустите шанс сэкономить несколько тысяч рублей!
Подробности у специалистов нашей компании.
Код работы: W006776
Тема: Сравнительный анализ и оценка различных структур многопроцессорных ВС
Содержание
ЧАСТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ 

«МОСКОВСКАЯ ГУМАНИТАРНО-ТЕХНИЧЕСКАЯ АКАДЕМИЯ» 



КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ И ИНФОРМАТИКИ







	«Допустить к защите»

					Заведующий

					кафедрой высшей математики и информатики

	к.э.н., профессор Горяинов В.В.

_____________________________

	(подпись)

«___»_______________20___ г.













ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ 09.03.04 «ПРОГРАММНАЯ ИНЖЕНЕРИЯ»

КВАЛИФИКАЦИЯ «АКАДЕМИЧЕСКИЙ БАКАЛАВР»



ТЕМА: «Сравнительный анализ и оценка различных структур многопроцессорных ВС»







Выполнил студент 5 курса

ВМ.07.3-92группы 

Очно-заочной формы обучения

Воскресенский Дмитрий Олегович



___________________________

(подпись)



	Научный руководитель

	к.т.н., доцент Беспалов М.Е.

	

__________________________

	(подпись)









Москва – 2018

	


Содержание



Введение…………………………………………………………………………...3

1. Теоретическая часть……………………………………………………………5

1.1. Многопроцессорные системы…………………………………..…….5

1.2. Архитектуры вычислительных систем по параллельной обработке данных………………………………………………………………………9 1.3. Архитектуры оперативной памяти………………………………….13

1.4. Кластеры………………………………………………………………19

1.5. Основы реализации…………………………………………………..20

1.6. Многопроцессорные системы с локальной памятью и многомашинные системы………………..……………………………….23

2. Аналитическая часть………………………………………………………….27

2.1. Функционал и возможности архитектур ВС…………………..…...27

2.1.1. Машины типа SISD………………………………………….27

2.1.2. Архитектура CISC…………………………………………...28

2.1.3. Архитектура RISC…………………………………………...29

2.1.4 Машины типа SIMD………………………………………….30

2.1.5. Машины типа MIMD………………………………………..31

2.1.6. Многопроцессорные машины с SIMD-процессорами…….32

2.2. Модели связи и структуры памяти………………………………….33		2.2.1. SMP-структура……………………………………………….11

2.2.2. MPP-структура……………………………………………….11

2.2.3. Гибридная структура NUMA……………………………….11

2.3. Структуры организации высокопроизводительных процессоров...11

2.3.1. Ассоциативные процессоры………………………………...11

2.3.2. Конвейерные процессоры…………………………………...11

3.2.3. Матричные процессоры……………………………………..11

2.3.4. Коммуникационные процессоры…………………………...11

2.3.5. Процессоры баз данных……………………………………..11

2.3.6. Потоковые процессоры……………………..………...11

2.3.7. Нейронные процессоры………………………………11

2.3.8. Процессоры с многозначной (нечеткой) логикой…..11

2.3.9. GPU процессоры……………………………………...11

2.4. Коммутаторы в ВС…………………………………………….11

2.4.1. Составные коммутаторы……………………………..11

2.4.2. Коммутатор Клоза…………………………………….11

2.4.3. Распределенные составные коммутаторы…………..11

3. Проектная часть………………………………………………………...11

3.1. Требования к компонентам МВС…………………………….11

3.1.1. Отношение "стоимость/производительность"……...11

3.1.2. Масштабируемость системы…………………………11

3.1.3. Совместимость и мобильность программного обеспечения………………………………………………………...11

3.1.4.Надежность и отказоустойчивость системы………...11

3.2. Система построение МВС, оценка и профиль………………11

3.2.1. Как выбрать архитектуру МВС……………………...11

3.2.2. Выбор процессоров…………………….......................11

3.2.3. Как выбрать архитектуру памяти……………………11

3.3. Оценка эффективности  составленной МВС………………...11

Заключение………………………………………………………………..11

Список литературы……………………………………………………….11

















Введение



На протяжении всей истории развития вычислительной техники делались попытки найти какую-то общую классификацию, под которую подпадали бы все возможные направления развития компьютерных архитектур. Ни одна из таких классификаций не могла охватить все разнообразие разрабатываемых архитектурных решений и не выдерживала испытания временем. Тем не менее в научный оборот попали и широко используются ряд терминов, которые полезно знать не только разработчикам, но и пользователям компьютеров.

На данный момент многопроцессорные вычислительные системы (МВС) непрерывно расширяется, захватывая  новые области в производстве, бизнесе, науке. Быстрое развитие кластерных систем является благодатной почвой  для использования МВС во всех сферах бизнеса и экономики. В связи с увеличением доли МВС, на фоне современных разработок, увеличивается количество сложных к выполнению обычным ПК задач, с которыми может справиться только высокопроизводительная вычислительная техника.

Главной отличительной особенностью многопроцессорной вычислительной системы является ее производительность, т.е. количество операций, производимых системой за единицу времени, что является одной из важнейших переменных в современном обществе.

Однако, несмотря на все трудности, связанные с аппаратной и программной реализацией, МПВС получают все большее распространение, так как обладают рядом достоинств, основные из которых:

высокая надежность и готовность за счет резервирования и возможности реконфигурации;

высокая производительность за счет возможности гибкой организации параллельной обработки информации и более полной загрузки всего оборудования;

высокая экономическая эффективность за счет повышения коэффициента использования оборудования комплекса.

В данной дипломной работе мы рассмотрим и изучим:

что из себя представляют многопроцессорные системы;

архитектуры вычислительных систем;

архитектуры операвтивной памятиж;

виды кластеров для многопроцессорных систем;

коммутаторы в вычислительных системах и их классы;

структуры организации высокопроизводительных процессоров;

Целью данной работы я ставлю анализ и разработку комплексной системы для всех видов бизнеса, учебных и научных учреждений, независимых групп разработчиков по выбору собственной, сбалансированной, с учетом нужд заказчика, многопроцессорной  вычислительной системы на основе  доступных на данный момент на рынке устройств, также провести анализ архитектур вычислительных систем, структуры их процессоров и дать оценку развития.























1. Теоретическая часть



1.1. Многопроцессорные системы



Если традиционно МВС применялись в основном в научной сфере для решения вычислительных задач, требующих мощных вычислительных ресурсов, то сейчас из-за бурного развития бизнеса резко возросло количество компаний, отводящих использованию компьютерных технологий и электронного документооборота главную роль. В связи с этим непрерывно растет потребность в построении централизованных вычислительных систем для критически важных приложений, связанных с обработкой транзакций, управлением базами данных и обслуживанием телекоммуникаций. Можно выделить две основные сферы применения описываемых систем: обработка транзакций в режиме реального времени (OLTP, on-line transaction processing) и создание хранилищ данных для организации систем поддержки принятия решений (Data Mining, Data Warehousing, Decision Support System). Система для глобальных корпоративных вычислений — это, прежде всего, централизованная система, с которой работают практически все пользователи в корпорации, и, соответственно, она должна все время находиться в рабочем состоянии. Как правило, решения подобного уровня устанавливают в компаниях и корпорациях, где даже кратковременные простои сети могут привести к громадным убыткам. Поэтому для организации такой системы не подойдет обыкновенный сервер со стандартной архитектурой, вполне пригодный там, где нет жестких требований к производительности и времени простоя. Высокопроизводительные системы для глобальных корпоративных вычислений должны отличаться такими характеристиками как повышенная производительность, масштабируемость, минимально допустимое время простоя.

В настоящее время выделен круг фундаментальных и прикладных проблем, эффективное решение которых возможно только с использованием сверхмощных вычислительных ресурсов. Этот круг, обозначаемый понятием "Grand challenges", включает следующие задачи:

предсказания погоды, климата и глобальных изменений в атмосфере;

науки о материалах;

построение полупроводниковых приборов;

сверхпроводимость;

структурная биология;

разработка фармацевтических препаратов;

генетика;

квантовая хромодинамика;

астрономия;

транспортные задачи;

гидро- и газодинамика;

управляемый термоядерный синтез;

эффективность систем сгорания топлива;

геоинформационные системы;

разведка недр;

наука о мировом океане;

распознавание и синтез речи;

распознавание изображений.

Многопроцессорные вычислительные системы могут существовать в различных конфигурациях. Наиболее распространенными типами МВС являются:

системы высокой надежности;

системы для высокопроизводительных вычислений;

многопоточные системы.

Отметим, что границы между этими типами МВС до некоторой степени размыты, и часто система может иметь такие свойства или функции, которые выходят за рамки перечисленных типов. Более того, при конфигурировании большой системы, используемой как система общего назначения, приходится выделять блоки, выполняющие все перечисленные функции.

Катастрофоустойчивые решения создаются на основе разнесения узлов многопроцессорной системы на сотни километров и обеспечения механизмов глобальной синхронизации данных между такими узлами.

МВС для высокопроизводительных вычислений предназначены для параллельных расчетов. Имеется много примеров научных расчетов, выполненных на основе параллельной работы нескольких недорогих процессоров, обеспечивающих одновременное проведение большого числа операций.

МВС для высокопроизводительных вычислений обычно собраны из многих компьютеров. Разработка таких систем – процесс сложный, требующий постоянного согласования таких вопросов как инсталляция, эксплуатация и одновременное управление большим числом компьютеров, технических требований параллельного и высокопроизводительного доступа к одному и тому же системному файлу (или файлам), межпроцессорной связи между узлами и координации работы в параллельном режиме. Эти проблемы проще всего решаются при обеспечении единого образа операционной системы для всего кластера. Однако реализовать подобную схему удается далеко не всегда, и обычно она применяется лишь для небольших систем.

Многопоточные системы используются для обеспечения единого интерфейса к ряду ресурсов, которые могут со временем произвольно наращиваться (или сокращаться). Типичным примером может служить группа web-серверов.

Различают пиковую и реальную производительность. Под пиковой понимают величину, равную произведению пиковой производительности одного процессора на число таких процессоров в данной машине. При этом предполагается, что все устройства компьютера работают в максимально производительном режиме. Пиковая производительность компьютера вычисляется однозначно, и эта характеристика является базовой, по которой производят сравнение высокопроизводительных вычислительных систем. Чем больше пиковая производительность, тем (теоретически) быстрее пользователь сможет решить свою задачу. Пиковая производительность есть величина теоретическая и, вообще говоря, недостижимая при запуске конкретного приложения. Реальная же производительность, достигаемая на данном приложении, зависит от взаимодействия программной модели, в которой реализовано приложение, с архитектурными особенностями машины, на которой приложение запускается.

Существует два способа оценки пиковой производительности компьютера. Один из них опирается на число команд, выполняемых компьютером за единицу времени. Единицей измерения, как правило, является MIPS (Million Instructions Per Second). Производительность, выраженная в MIPS, говорит о скорости выполнения компьютером своих же инструкций. Но, во-первых, заранее не ясно, в какое количество инструкций отобразится конкретная программа, а во-вторых, каждая программа обладает своей спецификой, и число команд от программы к программе может меняться очень сильно. В связи с этим данная характеристика дает лишь самое общее представление о производительности компьютера.

Другой способ измерения производительности заключается в определении числа вещественных операций, выполняемых компьютером за единицу времени. Единицей измерения является Flops (Floating point operations per second) – число операций с плавающей точкой, производимых компьютером за одну секунду. Такой способ является более приемлемым для пользователя, поскольку ему известна вычислительная сложность программы, и, пользуясь этой характеристикой, пользователь может получить нижнюю оценку времени ее выполнения.

Однако пиковая производительность получается только в идеальных условиях, т.е. при отсутствии конфликтов при обращении к памяти при равномерной загрузке всех устройств. В реальных условиях на выполнение конкретной программы влияют такие аппаратно-программные особенности данного компьютера как: особенности структуры процессора, системы команд, состав функциональных устройств, реализация ввода/вывода, эффективность работы компиляторов.

Одним из определяющих факторов является время взаимодействия с памятью, которое определяется ее строением, объемом и архитектурой подсистем доступа в память. В большинстве современных компьютеров в качестве организации наиболее эффективного доступа к памяти используется так называемая многоуровневая иерархическая память. В качестве уровней используются регистры и регистровая память, основная оперативная память, кэш-память, виртуальные и жесткие диски, ленточные роботы. При этом выдерживается следующий принцип формирования иерархии: при повышении уровня памяти скорость обработки данных должна увеличиваться, а объем уровня памяти – уменьшаться. Эффективность использования такого рода иерархии достигается за счет хранения часто используемых данных в памяти верхнего уровня, время доступа к которой минимально. А поскольку такая память обходится достаточно дорого, ее объем не может быть большим. Иерархия памяти относится к тем особенностям архитектуры компьютеров, которые имеют огромное значение для повышения их производительности.



1.2. Архитектуры вычислительных систем по параллельной обработке данных



Чтобы дать более полное представление о многопроцессорных вычислительных системах, помимо высокой производительности необходимо назвать и другие отличительные особенности. Прежде всего, это необычные архитектурные решения, направленные на повышение производительности (работа с векторными операциями, организация быстрого обмена сообщениями между процессорами или организация глобальной памяти в многопроцессорных системах и др.).

Понятие архитектуры высокопроизводительной системы является достаточно широким, поскольку под архитектурой можно понимать и способ параллельной обработки данных, используемый в системе, и организацию памяти, и топологию связи между процессорами, и способ исполнения системой арифметических операций. Попытки систематизировать все множество архитектур впервые были предприняты в конце 60-х годов и продолжаются по сей день.

В 1966 г. М.Флинном (Flynn) был предложен чрезвычайно удобный подход к классификации архитектур вычислительных систем. В его основу было положено понятие потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором.  Параллельные ЭВМ часто подразделяются по классификации Флинна на машины типа SIMD (Single Instruction Multiple Data - с одним потоком команд при множественном потоке данных) и MIMD (Multiple Instruction Multiple Data - с множественным потоком команд при множественном потоке данных). Как и любая другая, приведенная выше классификация несовершенна: существуют машины прямо в нее не попадающие, имеются также важные признаки, которые в этой классификации не учтены. В частности, к машинам типа SIMD часто относят векторные процессоры, хотя их высокая производительность зависит от другой формы параллелизма - конвейерной организации машины. Многопроцессорные векторные системы, типа Cray Y-MP, состоят из нескольких векторных процессоров и поэтому могут быть названы MSIMD (Multiple SIMD)

Классификация Флинна не делает различия по другим важным для вычислительных моделей характеристикам, например, по уровню "зернистости" параллельных вычислений и методам синхронизации. Соответствующая система классификации основана на рассмотрении числа потоков инструкций и потоков данных и описывает четыре архитектурных класса:

SISD = Single Instruction Single Data 

MISD = Multiple Instruction Single Data 

SIMD = Single Instruction Multiple Data 

MIMD = Multiple Instruction Multiple Data

SISD (single instruction stream / single data stream) – одиночный поток команд и одиночный поток данных. К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор, способный обрабатывать только один поток последовательно исполняемых инструкций. В настоящее время практически все высокопроизводительные системы имеют более одного центрального процессора, однако каждый из них выполняет несвязанные потоки инструкций, что делает такие системы комплексами SISD-систем, действующих на разных пространствах данных. Для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка. В случае векторных систем векторный поток данных следует рассматривать как поток из одиночных неделимых векторов. Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и Sun Microsystems.

SIMD (single instruction stream / multiple data stream) – одиночный поток команд и множественный поток данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD-машин являются системы CPP DAP, Gamma II и Quadrics Apemille. Другим подклассом SIMD-систем являются векторные компьютеры. Векторные компьютеры манипулируют массивами сходных данных подобно тому, как скалярные машины обрабатывают отдельные элементы таких массивов. Это делается за счет использования специально сконструированных векторных центральных процессоров. Когда данные обрабатываются посредством векторных модулей, результаты могут быть выданы на один, два или три такта частотогенератора (такт частотогенератора является основным временным параметром системы). При работе в векторном режиме векторные процессоры обрабатывают данные практически параллельно, что делает их в несколько раз более быстрыми, чем при работе в скалярном режиме. Примерами систем подобного типа являются, например, компьютеры Hitachi S3600.

MIMD (multiple instruction stream / multiple data stream) – множественный поток команд и множественный поток данных. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных. В отличие от упомянутых выше многопроцессорных SISD-машин, команды и данные связаны, потому что они представляют различные части одной и той же задачи. Например, MIMD-системы могут параллельно выполнять множество подзадач с целью сокращения времени выполнения основной задачи. Большое разнообразие попадающих в данный класс систем делает классификацию Флинна не полностью адекватной. Действительно, и четырехпроцессорный SX-5 компании NEC, и тысячепроцессорный Cray T3E попадают в этот класс. Это заставляет использовать другой подход к классификации, иначе описывающий классы компьютерных систем. Основная идея такого подхода может состоять, например, в следующем. Будем считать, что множественный поток команд может быть обработан двумя способами: либо одним конвейерным устройством обработки, работающем в режиме разделения времени для отдельных потоков, либо каждый поток обрабатывается своим собственным устройством. Первая возможность используется в MIMD-компьютерах, которые обычно называют конвейерными или векторными, вторая – в параллельных компьютерах. В основе векторных компьютеров лежит концепция конвейеризации, т.е. явного сегментирования арифметического устройства на отдельные части, каждая из которых выполняет свою подзадачу для пары операндов. В основе параллельного компьютера лежит идея использования для решения одной задачи нескольких процессоров, работающих сообща, причем процессоры могут быть как скалярными, так и векторными.

MISD (multiple instruction stream / single data stream) – множественный поток команд и одиночный поток данных. Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных. В качестве аналога работы такой системы, по-видимому, можно рассматривать работу банка. С любого терминала можно подать команду и что-то сделать с имеющимся банком данных. Поскольку база данных одна, а команд много, мы имеем дело с множественным потоком команд и одиночным потоком данных.

Классификация архитектур вычислительных систем нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании МВС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.



1.3. Архитектуры оперативной памяти



Одной из отличительных особенностей многопроцессорной вычислительной системы является сеть обмена, с помощью которой процессоры соединяются друг с другом или с памятью. Модель обмена настолько важна для многопроцессорной системы, что многие характеристики производительности и другие оценки выражаются отношением времени обработки к времени обмена, соответствующим решаемым задачам. Существуют две основные модели межпроцессорного обмена: одна основана на передаче сообщений, другая - на использовании общей памяти. 

В многопроцессорной системе с общей памятью один процессор осуществляет запись в конкретную ячейку, а другой процессор производит считывание из этой ячейки памяти. Чтобы обеспечить согласованность данных и синхронизацию процессов, обмен часто реализуется по принципу взаимно исключающего доступа к общей памяти методом "почтового ящика".

В архитектурах с локальной памятью непосредственное разделение памяти невозможно. Вместо этого процессоры получают доступ к совместно используемым данным посредством передачи сообщений по сети обмена. Эффективность схемы коммуникаций зависит от протоколов обмена, основных сетей обмена и пропускной способности памяти и каналов обмена.

Часто, и притом необоснованно, в машинах с общей памятью и векторных машинах затраты на обмен не учитываются, так как проблемы обмена в значительной степени скрыты от программиста. Однако накладные расходы на обмен в этих машинах имеются и определяются конфликтами шин, памяти и процессоров. Чем больше процессоров добавляется в систему, тем больше процессов соперничают при использовании одних и тех же данных и шины, что приводит к состоянию насыщения. Модель системы с общей памятью очень удобна для программирования и иногда рассматривается как высокоуровневое средство оценки влияния обмена на работу системы, даже если основная система в действительности реализована с применением локальной памяти и принципа передачи сообщений.

В сетях с коммутацией каналов и в сетях с коммутацией пакетов по мере возрастания требований к обмену следует учитывать возможность перегрузки сети. Здесь межпроцессорный обмен связывает сетевые ресурсы: каналы, процессоры, буферы сообщений. Объем передаваемой информации может быть сокращен за счет тщательной функциональной декомпозиции задачи и тщательного диспетчирования выполняемых функций.

Таким образом, существующие MIMD-машины распадаются на два основных класса в зависимости от количества объединяемых процессоров, которое определяет и способ организации памяти и методику их меж соединений.

К первой группе относятся машины с общей (разделяемой) основной памятью, объединяющие до нескольких десятков (обычно менее 32) процессоров. Сравнительно небольшое количество процессоров в таких машинах позволяет иметь одну централизованную общую память и объединить процессоры и память с помощью одной шины. При наличии у процессоров кэш-памяти достаточного объема высокопроизводительная шина и общая память могут удовлетворить обращения к памяти, поступающие от нескольких процессоров. Поскольку имеется единственная память с одним и тем же временем доступа, эти машины иногда называются UMA (Uniform Memory Access). Такой способ организации со сравнительно небольшой разделяемой памятью в настоящее время является наиболее популярным. Структура подобной системы представлена на рис. 3.



Рис 1. Типовая архитектура мультипроцессорной системы с общей памятью.

Вторую группу машин составляют крупномасштабные системы с распределенной памятью. Для того чтобы поддерживать большое количество процессоров приходится распределять основную память между ними, в противном случае полосы пропускания памяти просто может не хватить для удовлетворения запросов, поступающих от очень большого числа процессоров. Естественно при таком подходе также требуется реализовать связь процессоров между собой.

С ростом числа процессоров просто невозможно обойти необходимость реализации модели распределенной памяти с высокоскоростной сетью для связи процессоров. С быстрым ростом производительности процессоров и связанным с этим ужесточением требования увеличения полосы пропускания памяти, масштаб систем (т.е. число процессоров в системе), для которых требуется организация распределенной памяти, уменьшается, также как и уменьшается число процессоров, которые удается поддерживать на одной разделяемой шине и общей памяти.

Распределение памяти между отдельными узлами системы имеет два главных преимущества. Во-первых, это эффективный с точки зрения стоимости способ увеличения полосы пропускания памяти, поскольку большинство обращений могут выполняться параллельно к локальной памяти в каждом узле. Во-вторых, это уменьшает задержку обращения (время доступа) к локальной памяти. Эти два преимущества еще больше сокращают количество процессоров, для которых архитектура с распределенной памятью имеет смысл.

Обычно устройства ввода/вывода, также как и память, распределяются по узлам и в действительности узлы могут состоять из небольшого числа (2-8) процессоров, соединенных между собой другим способом. Хотя такая кластеризация нескольких процессоров с памятью и сетевой интерфейс могут быть достаточно полезными с точки зрения эффективности в стоимостном выражении, это не очень существенно для понимания того, как такая машина работает, поэтому мы пока остановимся на системах с одним процессором на узел. Основная разница в архитектуре, которую следует выделить, в машинах с распределенной памятью заключается в том, как осуществляется связь и какова логическая модель памяти.





Рис. 2. Типовая архитектура машины с распределенной памятью.

SMP (symmetric multiprocessing) – симметричная многопроцессорная структура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.



Рис. 3. Схематический вид SMP-структуры

Память служит, в частности, для передачи сообщений между процессорами, при этом все вычислительные устройства при обращении к ней имеют равные права и одну и ту же адресацию для всех ячеек памяти.

MPP (massive parallel processing) – массивно-параллельная структура. Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП), коммуникационные процессоры (рутеры) или сетевые адаптеры, иногда – жесткие диски и/или другие устройства ввода/вывода. 



Рис. 4. Схематический вид архитектуры с раздельной памятью

По сути, такие модули представляют собой полнофункциональные компьютеры. 

NUMA (nonuniform memory access) – неоднородный доступ к памяти. Гибридная архитектура совмещает достоинства систем с общей памятью и относительную дешевизну систем с раздельной памятью.



Рис. 5. Структурная схема компьютера с гибридной сетью







1.4. Кластеры



Кластер представляет собой два или более компьютеров (часто называемых узлами), объединяемых при помощи сетевых технологий на базе шинной архитектуры или коммутатора и предстающих перед пользователями в качестве единого информационно-вычислительного ресурса. В качестве узлов кластера могут быть выбраны серверы, рабочие станции и даже обычные персональные компьютеры. Узел характеризуется тем, что на нем работает единственная копия операционной системы. Преимущество кластеризации для повышения работоспособности становится очевидным в случае сбоя какого-либо узла: при этом другой узел кластера может взять на себя нагрузку неисправного узла, и пользователи не заметят прерывания в доступе. Возможности масштабируемости кластеров позволяют многократно увеличивать производительность приложений для большего числа пользователей технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Такие суперкомпьютерные системы являются самыми дешевыми, поскольку собираются на базе стандартных комплектующих элементов("off the shelf"), процессоров, коммутаторов, дисков и внешних устройств.

Кластеризация может осуществляться на разных уровнях компьютерной системы, включая аппаратное обеспечение, операционные системы, программы-утилиты, системы управления и приложения. Чем больше уровней системы объединены кластерной технологией, тем выше надежность, масштабируемость и управляемость кластера.

Условное деление на классы предложено Язеком Радаевским и Дугласом Эдлайном:

Класс I. Класс машин строится целиком из стандартных деталей, которые продают многие поставщики компьютерных компонентов (низкие цены, простое обслуживание, аппаратные компоненты доступны из различных источников).

Класс II. Система имеет эксклюзивные или не слишком широко распространенные детали. Таким образом можно достичь очень хорошей производительности, но при более высокой стоимости.

Как уже отмечалось, кластеры могут существовать в различных конфигурациях. Наиболее распространенными типами кластеров являются:

системы высокой надежности;

системы для высокопроизводительных вычислений;

многопоточные системы.



1.5. Основы реализации



Ключевым моментом реализации в многопроцессорных системах с небольшим числом процессоров как схемы записи с аннулированием, так и схемы записи с обновлением данных, является использование для выполнения этих операций механизма шины. Для выполнения операции обновления или аннулирования процессор просто захватывает шину и транслирует по ней адрес, по которому должно производиться обновление или аннулирование данных. Все процессоры непрерывно наблюдают за шиной, контролируя появляющиеся на ней адреса. Процессоры проверяют не находится ли в их кэш-памяти адрес, появившийся на шине. Если это так, то соответствующие данные в кэше либо аннулируются, либо обновляются в зависимости от используемого протокола. Последовательный порядок обращений, присущий шине, обеспечивает также строго последовательное выполнение операций записи, поскольку когда два процессора конкурируют за выполнение записи в одну и ту же ячейку, один из них должен получить доступ к шине раньше другого. Один процессор, получив доступ к шине, вызовет необходимость обновления или аннулирования копий в других процессорах. В любом случае, все записи будут выполняться строго последовательно. Один из выводов, который следует сделать из анализа этой схемы заключается в том, что запись в разделяемый элемент данных не может закончиться до тех пор, пока она не захватит доступ к шине.

В дополнение к аннулированию или обновлению соответствующих копий блока кэш-памяти, в который производилась запись, мы должны также разместить элемент данных, если при записи происходит промах кэш-памяти. В кэш-памяти со сквозной записью последнее значение элемента данных найти легко, поскольку все записываемые данные всегда посылаются также и в память, из которой последнее записанное значение элемента данных может быть выбрано (наличие буферов записи может привести к некоторому усложнению).

Однако для кэш-памяти с обратным копированием задача нахождения последнего значения элемента данных сложнее, поскольку это значение скорее всего находится в кэше, а не в памяти. В этом случае используется та же самая схема наблюдения, что и при записи: каждый процессор наблюдает и контролирует адреса, помещаемые на шину. Если процессор обнаруживает, что он имеет модифицированную ("грязную") копию блока кэш-памяти, то именно он должен обеспечить пересылку этого блока в ответ на запрос чтения и вызвать отмену обращения к основной памяти. Поскольку кэши с обратным копированием предъявляют меньшие требования к полосе пропускания памяти, они намного предпочтительнее в мультипроцессорах, несмотря на некоторое увеличение сложности. Поэтому далее мы рассмотрим вопросы реализации кэш-памяти с обратным копированием.

Для реализации процесса наблюдения могут быть использованы обычные теги кэша. Более того, упоминавшийся ранее бит достоверности (valid bit), позволяет легко реализовать аннулирование. Промахи операций чтения, вызванные либо аннулированием, либо каким-нибудь другим событием, также не сложны для понимания, поскольку они просто основаны на возможности наблюдения. Для операций записи мы хотели бы также знать, имеются ли другие кэшированные копии блока, поскольку в случае отсутствия таких копий, запись можно не посылать на шину, что сокращает время на выполнение записи, а также требуемую полосу пропускания.

При использовании протокола записи с обновлением, если блок находится в состоянии "разделяемый", то каждая запись в этот блок должна транслироваться. В случае протокола с аннулированием, когда посылается операция аннулирования, состояние блока меняется с "разделяемый" на "неразделяемый" (или "частный"). Позже, если другой процессор запросит этот блок, состояние снова должно измениться на "разделяемый". Поскольку наш наблюдающий кэш видит также все промахи, он знает, когда этот блок кэша запрашивается другим процессором, и его состояние должно стать "разделяемый".

Поскольку любая транзакция на шине контролирует адресные теги кэша, потенциально это может приводить к конфликтам с обращениями к кэшу со стороны процессора. Число таких потенциальных конфликтов можно снизить применением одного из двух методов: дублированием тегов, или использованием многоуровневых кэшей с "охватом" (inclusion), в которых уровни, находящиеся ближе к процессору являются поднабором уровней, находящихся дальше от него. Если теги дублируются, то обращения процессора и наблюдение за шиной могут выполняться параллельно. Конечно, если при обращении процессора происходит промах, он должен будет выполнять арбитраж с механизмом наблюдения для обновления обоих наборов тегов. Точно также, если механизм наблюдения за шиной находит совпадающий тег, ему будет нужно проводить ар.......................
Для получения полной версии работы нажмите на кнопку "Узнать цену"
Узнать цену Каталог работ

Похожие работы:

Отзывы

Выражаю благодарность репетиторам Vip-study. С вашей помощью удалось решить все открытые вопросы.

Далее
Узнать цену Вашем городе
Выбор города
Принимаем к оплате
Информация
Нет времени для личного визита?

Оформляйте заявки через форму Бланк заказа и оплачивайте наши услуги через терминалы в салонах связи «Связной» и др. Платежи зачисляются мгновенно. Теперь возможна онлайн оплата! Сэкономьте Ваше время!

Рекламодателям и партнерам

Баннеры на нашем сайте – это реальный способ повысить объемы Ваших продаж.
Ежедневная аудитория наших общеобразовательных ресурсов составляет более 10000 человек. По вопросам размещения обращайтесь по контактному телефону в городе Москве 8 (495) 642-47-44