- Дипломы
- Курсовые
- Рефераты
- Отчеты по практике
- Диссертации
Определение числа компонентов
Как уже было отмечено выше, число групп (компонентов) факторной модели определяется при помощи расчета «характеристических чисел» (Eigenvalues). Эти показатели характеризуют полноту отображения исходной информации в построенной факторной модели. Значения этих показателей содержатся в таблице «Total Variance Explained», которая выводится на экран компьютера среди прочих результатов факторного анализа (табл. 5.4). Таблица 5.4 Определение числа компонентов факторной модели Total Variance Explained Component Initial Eigenvalues Rotation Sums of Squared Loadings Total %ofVai ance Cumulative % ТоУ %ofVai ance Cumulative % 1 2,345 19,544 19,544 1,885 15,710 15,710 2 1,600 13,336 32,881 1,859 15,496 31,205 3 1,304 10,865 43,745 1,413 11,778 42,983 4 1,103 9,191 52,936 1,194 9,953 52,936 5 ,929 7,740 60,677 6 ,882 7,351 68,028 7 ,741 6,178 74,206 8 ,716 5,967 80,173 9 ,676 5,632 85,805 10 ,623 5,191 90,996 11 ,565 4,704 95,700 12 ,516 4,300 100,000 Etfrac on Method: Principal Component Analysis. В первом столбце табл. 5.4 (Component) указывается число компонентов различных вариантов факторной модели. В четвертом столбце этой таблицы (Cumulative, %) показан процент информации, сохраненной в процессе группировки исходного массива переменных с помощью факторной модели. Например, если число факторов в факторной модели равно числу переменных исходного массива (в нашем примере 12), т.е. группировка переменных не производится, исходная информация будет сохранена на 100%. Во втором столбце таблицы (Total) указываются значения «характеристических чисел» (Eigenvalues). В рассматриваемом примере было задано условие: значение «характеристических чисел» должно быть больше единицы (Eigenvalues over 1) (см. рис. 5.7). Максимальное значение компонентов фа^орной модели, в которой данный показатель превышает единицу, составляет 4. Это означает, что оптимальное число групп (факторов) в факторной модели составляет 4. Как видно из данных, представленных в табл. 5.4, факторная модель, состоящая из 4-х факторов, сохраняет лишь 52,936% исходной информации. Как отмечалось ранее, при группировке исходного массива переменных потеря информации неизбежна. При построении факторной модели следует стремиться к минимизации потерь информации. Сохранение информации всего лишь на 52,936% является не очень хорошим показателем. Однако, принимая во внимание, что в ходе факторного анализа число переменных сократится в 3 раза (с 12 до 4), а потеря информации составит менее 48%, применение построенной факторной модели следует считать целесообразным. В ходе формирования задания на проведение факторного анализа также было запрошено построение графика «Screen plot» (см. рис. 5.7), с помощью которого можно также определить оптимальное число групп. Результаты выполнения этой команды представлены на рис. 5.10. На рис. 5.10 представлен график, отображающий зависимость между «характеристическими числами» (Eigenvalues) и числом компонентов факторной модели (Component Number). При изменении количества факторов с 5 до 12 данный график представляет собой практически линейную функцию, а при уменьшении числа факторов с 5 до 4 происходит «перелом» графика. Это означает, что оптимальное число компонентов факторной модели (факторов) равно 4. Таким образом, результаты графического метода определения числа фактор >в подтвердили результаты расчетного метода (см. табл. 5.4). В результате применения обоих методов оптимальное число компонентов факторной модели составило 4.
Каталог работ |