VIP STUDY сегодня – это учебный центр, репетиторы которого проводят консультации по написанию самостоятельных работ, таких как:
  • Дипломы
  • Курсовые
  • Рефераты
  • Отчеты по практике
  • Диссертации
Узнать цену
Главная / Рефераты / Интепретация результатов

Интепретация результатов

В качестве результатов линейного регрессионного анализа SPSS выводит на экран компьютера три таблицы: «Model Summary», «ANOVA» и «Coefficients» (табл. 4.4,4.5 и 4.6). Поскольку при формировании задания на выполнение анализа был выбран пошаговый метод включения независимых переменных в регрессионную модель «Stepwise», то при представлении результатов анализа формируется несколько регрессионных моделей. В рассматриваемом примере таких моделей три (по числу независимых переменных). В соответствии с целями исследования основным результатом анализа является третья регрессионная модель, включающая все три независимые переменные (табл. 4.4). Сводная таблица модели Model Summary4 Model R R Square AjustedR Square Std. Error of the Es mate Durbin-Watson 1 ,789е ,623 ,622 444,996 2 ,889ь ,790 ,789 332,301 3 ,937е ,879 ,878 252,373 1,930 8 Predictors - влияющие переменные (константа): расходы на покупки. b Predictors - влияющие переменные (константа): расходы на покупки, расходы на проживание. с Predictors - влияющие переменные (константа): расходы на покупки, расходы на проживание, расходы на питание. d Dependent Variable - зависимая переменная: общие расходы на отдых. В сводной таблице модели представлены показатели, характеризующие качество построенных регрессионных моделей. В соответствии с целями исследования основным результатом нашего анааиза является третья регрессионная модель, включающая все три независимые переменные. В нашем примере значение коэффициента детерминации (R) составляет 0,937 (возможные значения от нуля до единицы), что свидетельствует о наличии плотной линейной взаимосвязи между суммой общих расходов на отпуск и суммами, расходуемыми туристами на текущие покупки, проживание и питание. Коэффициент R-квадрат (R Square) составляет 0,879. Это означает, что наша регрессионная модель описывает 87,9% случаев, т.е. ответов респондентов о структуре их расходов на отпуск. Показатели коэффициента детерминации и коэффициента R-квадрат для первых двух моделей ниже, чем для третьей модели (см. табл. 4.4). Также значения стандартной ошибки расчетов для первых двух моделей выше, чем для третьей. Это доказывает целесообразность включения в регрессионную модель всех ipex независимых переменных. Сводная таблица модели представляет также результат теста Дарбина—Уотсона на автокорреляцию, значение которого должно быть приближено к 2, что свидетельствует об отсутствии системных связей между остатками, т.е. между отклонениями эмпирических (наблюдаемых) значений от теоретически ожидаемых (расчетных). В рассматриваемом примере значение этого показателя составляет 1,930, что является очень хорошим результатом. В последнем столбце таблицы «ANOVA» (см. табл. 4.5) значение показателя «Статистическая значимость» (S g.) должно быть меньше или равно 0,05. В нашем примере для всех трех моделей этот показатель составляет 0,000. Это свидетельствует о том, что регрессионные модели, построенные на основе данных респондентов, попавших в выборку, справедливы для всей генеральной совокупности в целом. 8 Predictorr - влияющие переменные (константа): расходы на покупки. b Predictors - влияющие переменные (константа): расходы на покупки, расходы на проживание. с nredictors - влияющие переменные (константа): расходы на покупки, расходы на проживание, расходы на питание. d Dependent Variable - зависимая переменная: общие расходы на отдых. В табл. 4.6 представлены параметры моделей, построенных в результате линейного регрессионного анализа. В рассматриваемом примере результатом анализа является третья регрессионная модель, включающая все независимые переменные. Интерпретация результатов таблицы начинается с рассмотрения статистических показателей, характеризующих коллинеарность (наличие взаимосвязи) между независимыми переменными регрессионной модели (Collinearity Statistics). Значение показателя «Tolerance» должно превышать 0,1, а значение показателя «VIF» должно быть менее 10. В рассматриваемом примере значение «Tolerance» составляет 0,907, а «VIF» — 1,102, что свидетельствует о невозможности возникновения нежелательного эффекта муль- ти кол л и неарн ости. Стандартизированные коэффициенты регрессии (Beta) показывают относительную значимость независимых переменных, включенных в регрессионную модель. Иными словами, они показывают, как сильно влияют исследуемые факторы (независимые переменные) на итоговую величину (зависимую переменную). В рассматриваемом примере наибольшей значимостью обладает первая независимая переменная (Beta = 0,613). Это означает, что расходы на крупные покупки могут почти в два раза увеличить сумму общих расходов на отдых по сравнению с расходами на проживание (Beta = 0,366) и питание (Beta = 0,313). Результаты анализа можно объяснить тем, что расходы на питание и проживание в отеле/пансионе во время отдыха являются запланированными. Изменение этих расходов не ведет к резкому изменению расходов на отдых в целом. Что касается расходов на такие крупные покупки, как одежда, обувь, фотоаппаратура, спортивное снаряжение и т.п., то они, как правило, не являются запланированными. Туристы, отправляясь на отдых в курортную зону «Баварский лес», не планируют крупных покупок, поскольку этот регион не отличается низкими ценами. Именно поэтому совершение крупных покупок способно привести к резкому увеличению расходов на отдых. В табл. 4.6 представлены также нестандартизированные коэффициенты регрессии (В). Они являются наиболее важными показателями результатов анализа, поскольку используются для построения регрессионной модели (регрессионного уравнения). Следует отметить, что постоянный член рефессионного уравнения (Constant) в данном случае имеет достаточно большую величину (44,286). Это свидетельствует о том, что включенные в уравнение независимые переменные не в полной мере описывают зависимую переменную. В нашем примере это означает, что среди расходов на отпуск кроме затрат на покупки, оплаты проживания и расходов на питание существуют другие важные статьи затрат, например затраты на транспорт. Результатом линейного регрессионного анализа является модель линейной регрессии (регрессионное уравнение) где у — общие расходы туристов на проведение отдыха; х1 — расходы на покупки (одежды, обуви, галантерейных товаров, украшений, фотоаппаратуры и т.д.); х2 — расходы на проживание в отеле или пансионе (включая расходы на обслуживание); х3 — расходы на питание (покупки продуктов в магазинах, посещение кафе и ресторанов). Регрессионная модель является универсальной, поскольку описывает 87,9% случаев, т.е. ответов респондентов о структуре их расходов на отпуск. Она может быть использована специалистами по маркетингу при решении вопросов ценообразования в исследуемой курортной зоне. КОНТРОЛЬНЫЕ ВОПРОСЫ Назовите цели проведения и возможности использования результатов регрессионного анализа. Какие требования предъявляются к переменным, участвующим в проведении регрессионного анализа, в отношении типов шкал измерения? Как выглядит математическое описание регрессионной модели для простой и множественной линейной регрессии? Что характеризуют коэффициент детерминации и коэффициент R-квадрат, рассчитываемые при проведении регрессионного анализа? Как можно интерпретировать результаты, если значение коэффициента детерминации составляет 0,708, а коэффициента R-квадрат — 0,623? С какой целью в ходе проведения регрессионного анализа производится тест Дарбина—Уотсона? Как можно интерпретировать результаты, если значение этого показателя составляет 1,487? С какой целью в ходе проведения регрессионного анализа производится тест «ANOVA»? Как следует интерпретировать результаты, если величина «Significance» («Значимость») по результатам этого теста составляет 0,03? Для чего служат стандартизированные (Beta) и нестандартизирован- ные (В) коэффициенты регрессии? Какие команды SPSS используются для построения диаграммы рассеяния и тренда, иллюстрирующего результаты простой линейной регрессии? В чем заключается особенность представления результатов множественного регрессионного анализа при использовании пошаговых методов включения переменных в регрессионную модель? В чем заключается эффект мультиколлинеарности при проведении множественного регрессионного анализа и по каким показателям определяется возможность возникновения этого эффекта?



Каталог работ Узнать цену


Похожие рефераты:

Отзывы

Спасибо, что так быстро и качественно помогли, как всегда протянул до последнего. Очень выручили. Дмитрий.

Далее
Узнать цену Вашем городе
Выбор города
Принимаем к оплате
Информация
Наши преимущества:

Оформление заказов в любом городе России
Оплата услуг различными способами, в том числе через Сбербанк на расчетный счет Компании
Лучшая цена
Наивысшее качество услуг

Рекламодателям и партнерам

Баннеры на нашем сайте – это реальный способ повысить объемы Ваших продаж.
Ежедневная аудитория наших общеобразовательных ресурсов составляет более 10000 человек. По вопросам размещения обращайтесь по контактному телефону в городе Москве 8 (495) 642-47-44