VIP STUDY сегодня – это учебный центр, репетиторы которого проводят консультации по написанию самостоятельных работ, таких как:
  • Дипломы
  • Курсовые
  • Рефераты
  • Отчеты по практике
  • Диссертации
Узнать цену
Главная / Рефераты / Под «черным ящиком» понимается объект исследования, внутреннее устройство которого неизвестно. Понятие «черный ящик» предложено У.Р. Эшби. В кибернетике оно позволяет изучать поведение систем, то есть их реакций на разнообразные внешние воздействия и в тоже время абстрагироваться от их внутреннего устройства. На рис. 12.1 приведено схемное построение входов , выходов , характеризуемых функцией перехода (8) и функцией выхода (А) «черного» ящика. Рис. 12.1. Схема взаимодействия входов и выходов «черного» ящика Манипулируя только лишь со входами и выходами, можно проводить определенные исследования. На практике всегда возникает вопрос, насколько гомоморфизм «черного» ящика отражает адекватность его изучаемой модели, то есть как полно в модели отражаются основные свойства оригинала. Описание любой системы управления во времени характеризуется картиной последовательности ее состояний в процессе движения к стоящей перед нею цели. Преобразование в системе управления может быть либо взаимнооднозначным и тогда оно называется изоморфным, либо только однозначным, в одну сторону. В таком случае преобразование называют гомоморфным. «Черный» ящик представляет собой сложную гомоморфную модель кибернетической системы, в которой соблюдается разнообразие. Он только тогда является удовлетворительной моделью системы, когда содержит такое количество информации, которое отражает разнообразие системы. Можно предположить, что чем большее число возмущений действует на входы модели системы, тем большее разнообразие должен иметь регулятор. В настоящее время известны два вида «черных» ящиков. К первому виду относят любой «черный» ящик, который может рассматриваться как автомат, называемый конечным или бесконечным. Поведение таких «черных» ящиков известно. Ко второму виду относятся такие «черные» ящики, поведение которых может быть наблюдаемо только в эксперименте. В таком случае в явной или неявной форме высказывается гипотеза о предсказуемости поведения «черного» ящика в вероятностном смысле. Без предварительной гипотезы невозможно любое обобщение, или, как говорят, невозможно сделать индуктивное заключение на основе экспериментов с «черным» ящиком. Для обозначения модели «черного» ящика Н. Винером [2] предложено понятие «белого» ящика. «Белый» ящик состоит из известных компонентов, то есть известных . Его содержимое специально подбирается для реализации той же зависимости выхода от входа, что и у соответствующего «черного» ящика. В процессе проводимых исследований и при обобщениях, выдвижении гипотез и установления закономерностей возникает необходимость корректировки организации «белого» ящика и смены моделей. В связи с этим, при моделировании исследователь должен обязательно многократно обращаться к схеме отношений «черный» – «белый» ящик.

Под «черным ящиком» понимается объект исследования, внутреннее устройство которого неизвестно. Понятие «черный ящик» предложено У.Р. Эшби. В кибернетике оно позволяет изучать поведение систем, то есть их реакций на разнообразные внешние воздействия и в тоже время абстрагироваться от их внутреннего устройства. На рис. 12.1 приведено схемное построение входов , выходов , характеризуемых функцией перехода (8) и функцией выхода (А) «черного» ящика. Рис. 12.1. Схема взаимодействия входов и выходов «черного» ящика Манипулируя только лишь со входами и выходами, можно проводить определенные исследования. На практике всегда возникает вопрос, насколько гомоморфизм «черного» ящика отражает адекватность его изучаемой модели, то есть как полно в модели отражаются основные свойства оригинала. Описание любой системы управления во времени характеризуется картиной последовательности ее состояний в процессе движения к стоящей перед нею цели. Преобразование в системе управления может быть либо взаимнооднозначным и тогда оно называется изоморфным, либо только однозначным, в одну сторону. В таком случае преобразование называют гомоморфным. «Черный» ящик представляет собой сложную гомоморфную модель кибернетической системы, в которой соблюдается разнообразие. Он только тогда является удовлетворительной моделью системы, когда содержит такое количество информации, которое отражает разнообразие системы. Можно предположить, что чем большее число возмущений действует на входы модели системы, тем большее разнообразие должен иметь регулятор. В настоящее время известны два вида «черных» ящиков. К первому виду относят любой «черный» ящик, который может рассматриваться как автомат, называемый конечным или бесконечным. Поведение таких «черных» ящиков известно. Ко второму виду относятся такие «черные» ящики, поведение которых может быть наблюдаемо только в эксперименте. В таком случае в явной или неявной форме высказывается гипотеза о предсказуемости поведения «черного» ящика в вероятностном смысле. Без предварительной гипотезы невозможно любое обобщение, или, как говорят, невозможно сделать индуктивное заключение на основе экспериментов с «черным» ящиком. Для обозначения модели «черного» ящика Н. Винером [2] предложено понятие «белого» ящика. «Белый» ящик состоит из известных компонентов, то есть известных . Его содержимое специально подбирается для реализации той же зависимости выхода от входа, что и у соответствующего «черного» ящика. В процессе проводимых исследований и при обобщениях, выдвижении гипотез и установления закономерностей возникает необходимость корректировки организации «белого» ящика и смены моделей. В связи с этим, при моделировании исследователь должен обязательно многократно обращаться к схеме отношений «черный» – «белый» ящик.

Рассмотрим, как изучается и исследуется поведение «черного» ящика второго вида. Предположим, что дана некоторая система управления, внутреннее строение которой неизвестно. Система управления имеет входы и выходы Способ исследования поведения данного «черного» ящика заключается в проведении эксперимента, результаты которого можно представить в виде табл. 7. Такой способ исследования «черного» ящика называется протокольным. Значения входных величин в моменты времени могут выбираться произвольно. Таблица 7 Способ исследования «черного» ящика Другой способ исследования заключается в подаче на входы некоторых стандартных последовательностей. Этот способ особенно привлекателен, потому что позволяет сравнивать поведение нескольких «черных» ящиков с условием выбора таких, которые будут соответствовать предъявляемым требованиям. Исследование систем управления связано с понятиями «вероятностный автомат», «вероятностная система», что требует изучения их вероятностных свойств. Для этих целей можно построить матрицу вероятностей (табл. 8), в которой для каждого входа xi и каждого выхода уi указывается условная вероятность pi, что уi возникает в ответ на хi [7], приведенной в табл. 8. Разработка методов построения математических моделей «черного» ящика является одной из важных кибернетических проблем. При условии наличия математической модели «черного» ящика появляется возможность отнести его к какому-либо одному классу, все системы которого изоморфны по поведению. Создание математического описания «черного» ящика является своего рода искусством. В некоторых случаях удается сформировать алгоритм, в соответствии с которым «черный» ящик реагирует на произвольный входной сигнал. Для большинства же случаев делаются попытки установить дифференциальные уравнения, которые связывают реакцию «черного» ящика с его входами или, как говорят, с его входными стимулами. Для науки метод «черный» ящик имеет весьма большое значение. С его помощью в науке были сделаны очень многие выдающиеся открытия. Например, ученый Гарвей еще в XVII веке предугадал строение сердца. Он моделировал работу сердца насосом, позаимствовав идеи из совершенно другой области современных ему знаний – гидравлики. Практическая ценность метода «черный» ящик заключается во-первых, в возможности исследования очень сложных динамических систем, и, во-вторых, в возможности замены одного «ящика» другим. Окружающая действительность и биология дают массу примеров выявления строения систем методом «черного» ящика. Таблица 8 Матрица вероятностей NB ¦ Под «черным ящиком» понимается объект исследования, внутреннее устройство которого неизвестно. Понятие «черный ящик» предложено У.Р. Эшби. В кибернетике оно позволяет изучать поведение систем, то есть их реакций на разнообразные внешние воздействия и в тоже время абстрагироваться от их внутреннего устройства. ¦ В настоящее время известны два вида «черных» ящиков. К первому виду относят любой «черный» ящик, который может рассматриваться как автомат, называемый конечным или бесконечным. Поведение таких «черных» ящиков известно. Ко второму виду относятся такие «черные» ящики, поведение которых может быть наблюдаемо только в эксперименте. ¦ «Белый» ящик состоит из известных компонентов, то есть известных X, Y, ?, ?. Его содержимое специально подбирается для реализации той же зависимости выхода от входа, что и у соответствующего «черного» ящика. ¦ Разработка методов построения математических моделей «черного» ящика является одной из важных кибернетических проблем. При условии наличия математической модели «черного» ящика появляется возможность отнести его к какому-либо одному классу, все системы которого изоморфны по поведению. ¦ Создание математического описания «черного» ящика является своего рода искусством. В некоторых случаях удается сформировать алгоритм, в соответствии с которым «черный» ящик реагирует на произвольный входной сигнал. ¦ Для науки метод «черный» ящик имеет весьма большое значение. С его помощью в науке были сделаны очень многие выдающиеся открытия. Например, ученый Гарвей еще в XVII веке предугадал строение сердца. Он моделировал работу сердца насосом, позаимствовав идеи из совершенно другой области современных ему знаний – гидравлики. Литература 1. Ансофф И. Стратегическое управление. – М.: Экономика, 1989. 2. Винер Н. Кибернетика, или управление и связь в животном имашине. – М.: Советское радио, 1958. 3. Джордж Ф. Основы кибернетики. – М.: Радио и связь, 1984. 4. Дьяченко А.В. Теория систем. – Волгоград, 1995. 5. Лонге О. Введение в экономическую кибернетику. – М.: Прогресс, 1968. 6. Калман Р., Фалб М., Арбиб М. Очерки по математической теории систем. – М.:Мир, 1971. 7. Кастлер Г. Общие принципы анализа систем // Теоретическая и математическая биология: Сб. – М.: Мир, 1968. 8. Утеуш Э.В., Утеуш З.В. Введение в кибернетическое моделирование. – М.: Энергия, 1971. 9. Эшби У.Р. Введение в кибернетику: Пер. с англ. / Под ред. В.А. Успенского. – М.: ИЛ, 1962.

Каталог работ Узнать цену


Похожие рефераты:

Отзывы

Спасибо, что так быстро и качественно помогли, как всегда протянул до последнего. Очень выручили. Дмитрий.

Далее
Узнать цену Вашем городе
Выбор города
Принимаем к оплате
Информация
Нет времени для личного визита?

Оформляйте заявки через форму Бланк заказа и оплачивайте наши услуги через терминалы в салонах связи «Связной» и др. Платежи зачисляются мгновенно. Теперь возможна онлайн оплата! Сэкономьте Ваше время!

Рекламодателям и партнерам

Баннеры на нашем сайте – это реальный способ повысить объемы Ваших продаж.
Ежедневная аудитория наших общеобразовательных ресурсов составляет более 10000 человек. По вопросам размещения обращайтесь по контактному телефону в городе Москве 8 (495) 642-47-44