VIP STUDY сегодня – это учебный центр, репетиторы которого проводят консультации по написанию самостоятельных работ, таких как:
  • Дипломы
  • Курсовые
  • Рефераты
  • Отчеты по практике
  • Диссертации
Узнать цену

Планета Земля

Внимание: Акция! Курсовая работа, Реферат или Отчет по практике за 10 рублей!
Только в текущем месяце у Вас есть шанс получить курсовую работу, реферат или отчет по практике за 10 рублей по вашим требованиям и методичке!
Все, что необходимо - это закрепить заявку (внести аванс) за консультацию по написанию предстоящей дипломной работе, ВКР или магистерской диссертации.
Нет ничего страшного, если дипломная работа, магистерская диссертация или диплом ВКР будет защищаться не в этом году.
Вы можете оформить заявку в рамках акции уже сегодня и как только получите задание на дипломную работу, сообщить нам об этом. Оплаченная сумма будет заморожена на необходимый вам период.
В бланке заказа в поле "Дополнительная информация" следует указать "Курсовая, реферат или отчет за 10 рублей"
Не упустите шанс сэкономить несколько тысяч рублей!
Подробности у специалистов нашей компании.
Код работы: R000415
Тема: Планета Земля
Содержание
     Содержание
     Стр.
Введение…………………………………………………………………………..3
Глава I.
1.1. Планета Земля……………………………………………………………..5
1.2. Внутреннее строение Земли……………………………………………...9
Глава II. 
2.1. О Земле…………………………………………………………………....13
2.2. Земная кора……………………………………………………………….16
2.3. Мантия Земли……………………………………………………………20
2.4.Ядро Земли………………………………………………………………..22
Глава III.
3.1. Гипотезы и факты……………………………………………………….27
Заключение……………………………………………………………………...31
Список использованной литературы………………………………………..32
Приложение……………………………………………………………………..33
     
Введение
     
     Земля занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в которую входят Меркурий, Венера, Земля и Марс, она является самой крупной. Важнейшим отличием Земли от других планет Солнечной системы является существование на ней жизни, достигшей с появлением человека своей высшей, разумной формы. Условия для развития жизни на ближайших к Земле телах Солнечной системы неблагоприятны; обитаемые тела за пределами последней пока также не обнаружены. Однако жизнь — естественный этап развития материи, поэтому Землю нельзя считать единственным обитаемым космическим телом Вселенной, а земные формы жизни — её единственно возможными формами.
     Согласно современным космогоническим представлениям, Земля образовалась приблизительно 4,5 млрд. лет назад путём гравитационной конденсации из рассеянного в околосолнечном пространстве газопылевого вещества, содержащего все известные в природе химические элементы. Формирование Земли сопровождалось дифференциацией вещества, которой способствовал постепенный разогрев земных недр, в основном за счёт теплоты, выделявшейся при распаде радиоактивных элементов (урана, тория, калия и др.). Результатом этой дифференциации явилось разделение Земли на концентрически расположенные слои — геосферы, различающиеся химическим составом, агрегатным состоянием и физическими свойствами. В центре образовалось ядро Земли, окруженное мантией. Из наиболее лёгких и легкоплавких компонентов вещества, выделившихся из мантии в процессах выплавления,возникла расположенная над мантией земная кора.
     Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Знания о внутреннем строении Земли пока очень поверхностны, так как получены на основании косвенных доказательств. Прямые свидетельства относятся только к поверхностной пленке планеты, чаще всего не превышающей полутора десятков километров. 
     Исходя из всего выше сказанного, изучение внутреннего строения Земли сегодня является  актуальным и жизненно важным. С ним (внутренним строением Земли) связаны образование и размещение многих видов полезных ископаемых, рельефа земной поверхности, возникновение вулканов и землетрясений. Знания о внутреннем строении Земли необходимы и для составления геологических и географических прогнозов.
     Целью работы является изучение внутреннего строения Земли.
     Задачи работы:
     Рассмотреть модель строения Земли. 
     Ознакомиться с современными данными о сейсмических границах и методами изучения внутреннего строения Земли.
     Изучить внутреннее строение Земли, его состав.
     Установить связь между строением Земли и процессами внутри Земли.
     Структура курсовой состоит из введения, трех глав, заключения, списка использованной литературы и приложения.
     
Глава I.
     
1.1. Планета  Земля 
     
     Земля — третья по расстоянию от Солнца большая планета Солнечной системы (рис.1). Масса Земли равна 5976*1021 кг, что составляет 1/448 долю массы больших планет и 1/330000 массы Солнца. Под действием притяжения Солнца Земля, как и другие тела Солнечной системы, обращается вокруг него по эллиптической (мало отличающейся от круговой) орбите. Солнце расположено в одном из фокусов эллиптической орбиты Земли, вследствие чего расстояние между Землёй и Солнцем в течение года меняется от 147,117 млн. км. до 152,083 млн. км. Большая полуось орбиты Земли, равная 149,6 млн. км, принимается за единицу при измерении расстояний в пределах Солнечной системы. Скорость движения Земли по орбите, равная в среднем 29,765 км/сек, колеблется от 30,27 км/сек (в перигелии) до 29,27 км/сек (в афелии). Вместе с Солнцем Земля участвует также в движении вокруг центра Галактики, период галактического обращения составляет около 200 млн. лет, средняя скорость движения 250 км/сек. Относительно ближайших звёзд Солнце вместе с Землей движется со скоростью  19,5 км/сек в направлении созвездия Геркулеса.1
     Период обращения Земли вокруг Солнца, называемый годом, имеет несколько различную величину в зависимости от того, по отношению к каким телам или точкам небесной сферы рассматривается движение Земли и связанное с ним кажущееся движение Солнца по небу. Период обращения, соответствующий промежутку времени между двумя прохождениями Солнца через точку весеннего равноденствия, называется тропическим годом. Тропический год положен в основу календаря, он равен 365,242 средних солнечных суток.	
     Плоскость земной орбиты (плоскость эклиптики) наклонена в современную эпоху под углом 1,6
     Естественный спутник Земли — Луна обращается вокруг Земли по эллиптической орбите на среднем расстоянии 384 400 км. Масса Луны составляет 1:81,5 долю массы Земли (73,5*1021кг). Центр масс системы Земля — Луна отстоит от центра З. на ѕ её радиуса. Оба тела — Земля и Луна — обращаются вокруг центра масс системы. Отношение массы Луны к массе Земли — наибольшее среди всех планет и их спутников в Солнечной системе, поэтому систему Земля — Луну часто рассматривают как двойную планету.
     Земля имеет сложную форму, определяемую совместным действием гравитации, центробежных сил, вызванных осевым вращением Земли, а также совокупностью внутренних и внешних рельефообразующих сил. Приближённо в качестве формы (фигуры) Земли принимают уровненную поверхность гравитационного потенциала (т. е. поверхность, во всех точках перпендикулярную к направлению отвеса), совпадающую с поверхностью воды в океанах (при отсутствии волн, приливов, течений и возмущений, вызванных изменением атмосферного давления). Эту поверхность называют геоидом. Объём, ограниченный этой поверхностью, считается объёмом Земли. Средним радиусом Земли называют радиус шара того же объёма, что и объём геоида. Для решения многих научных и практических задач геодезии, картографии и других в качестве формы Земли принимают земной эллипсоид.2
     Вследствие вращения Земли точки экватора имеют скорость 465 м/сек, а точки, расположенные на широте  — скорость 465cos (м/сек), если считать Землю шаром. Зависимость линейной скорости вращения, а, следовательно, и центробежной силы от широты приводит к различию значений ускорения силы тяжести на разных широтах (см. табл. 1).  
     Табл. 1. — Геометрические и физические характеристики Земли
Экваториальный радиус
6378,160 км
Полярный радиус
6356,777 км
Сжатие земного эллипсоида
1:298,25
Средний радиус
6371,032 км
Длина окружности экватора
40075,696 км
Поверхность 
510,2 ?106км2
Объём 
1,083 ?1012км3
Масса 
5976?? 1021кг
Средняя плотность
5518 кг/м3
Ускорение силы тяжести (на уровне моря)
 
  а) на экваторе
9,78049 м/сек2
  б) на полюсе
9,83235 м/сек2
  в) стандартное
9,80665 м/сек2
Момент инерции относительно оси вращения
8,104?? 1037кг?? м2
     
     Вращение Земли вокруг своей оси вызывает смену дня и ночи на её поверхности. Период вращения Земли определяет единицу времени — сутки. Ось вращения Земли отклонена от перпендикуляра к плоскости эклиптики на 23° 26,5' (в середине 20 в.); в современную эпоху этот угол уменьшается на 0,47“ за год. При движении Земли по орбите вокруг Солнца её ось вращения сохраняет почти постоянное направление в пространстве. Это приводит к смене времён года. Гравитационное влияние Луны, Солнца, планет вызывает длительные периодические изменения эксцентриситета орбиты и наклона оси Земли, что является одной из причин многовековых изменений климата.3
     Период вращения Земли систематически увеличивается под воздействием лунных и в меньшей степени солнечных приливов. Притяжение Луны создаёт приливные деформации как атмосферы и водной оболочки, так и «твёрдой» Земли. Они направлены к притягивающему телу и, следовательно, перемещаются по Земле при её вращении. Приливы в земной коре имеют амплитуду до 43 см, в открытом океане — не более 1м, в атмосфере они вызывают изменение давления в несколько сот н/м2 (несколько мм рт. ст.). Приливное трение, сопровождающее движение приливов, приводит к потере системой Земля — Луна энергии и передаче момента количества движения от Земли к Луне. В результате вращение Земля замедляется, а Луна удаляется от Земли. Изучение месячных и годичных колец роста у ископаемых кораллов позволило оценить число суток в году в прошлые геологические эпохи (до 600 млн. лет назад). Результаты исследований говорят о том, что период вращения З. вокруг оси увеличивается в среднем на несколько м/сек за столетие (500 млн. лет назад длительность суток составляла 20,8 ч).
     Поскольку Земля имеет сплюснутую форму (избыток массы у экватора), а орбита Луны не лежит в плоскости земного экватора, притяжение Луны вызывает прецессию — медленный поворот земной оси в пространстве (полный оборот происходит за 26 тыс. лет). На это движение накладываются периодические колебания направления оси — нутация(основной период 18,6 года). Положение оси вращения по отношению к телу Земли испытывает как периодические изменения (полюсы при этом отклоняются от среднего положения на 10—15 м), так и вековые (среднее положение северного полюса смещается в сторону Северной Америки со скоростью ~11 см в год.). 4
     
     
     
     
     
     
     
     
     
     
1.2. Внутреннее строение Земли

     Не просто «заглянуть» в недра Земли. Даже самые глубокие скважины на суше едва преодолевают 10 – километровый рубеж, а под водой удаётся, пройдя осадочный чехол, проникнуть в базальтовый фундамент не более чем на 1.5 км. Однако нашёлся другой способ. Как в медицине рентгеновские лучи позволяют увидеть внутренние органы человека, так при исследовании недр планеты на помощь приходят сейсмические волны. Скорость сейсмических волн зависит от плотности и упругих свойств горных пород, через которые они проходят. Более того, они отражаются от границ между пластами пород разного типа и преломляются на этих границах.
     По записям колебаний земной поверхности при землятресениях – сейсмограммам – было установлено, что недра Земли состоят из трёх основных частей: коры, оболочки (мантии) и ядра.
     Кора отделяется от оболочки отчётливой границей, на которой скачкообразно возрастают скорости сейсмических волн, что вызвано резким повышением плотности вещества. Эта граница носит название раздел Мохоровичича (иначе – поверхность Мохо или раздел М) по фамилии сербского сейсмолога, открывшего её в 1909 г.
     Толщина коры непостоянна, она изменяется от нескольких километров в океанических областях до нескольких десятков километров в горных районах материков. В самых грубых моделях Земли кору представляют в виде однородного слоя толщиной порядка 35 километров. Ниже, до глубины примерно 2900 км, расположена мантия. Она, как и земная кора, имеет сложное строение.
     Ещё в XIX столетии стало ясно, что у Земли должно быть плотное ядро. Действительно, плотность наружных пород земной коры составляет около 2800 кг/м3 для гранитов и примерно 3000 кг/м3 для базальтов, а средняя плотность нашей планеты – 5500 кг/м3. В то же время существуют железные метеориты со средней плотностью 7850 кг/м3 и возможна ещё более значительная концентрация железа. Это послужило основанием для гипотезы о железном ядре Земли. А в начале XX в. были получены первые сейсмологические свидетельства его существования.
     Граница между ядром и мантией наиболее отчётливая. Она сильно отражает продольные (Р) и поперечные (S) сейсмические волны и преломляет Р-волны. Ниже этой границы скорость Р-волны резко падает, а плотность вещества возрастает: от 5600 кг/м3 до 10000 кг/м3. S-волны ядро вообще не пропускает.5 Это означает, что вещество там находится в жидком состоянии(рис.2).
     В 30–е гг. сейсмологи установили, что у Земли есть и внутреннее, твёрдое ядро. Современное значение глубины границы между внутренним и внешним ядрами примерно 5150 км.
     Граница наружной зоны Земли – расположена на глубине порядка 70 км. Литосфера включает в себя как земную кору, так и часть верхней мантии. Этот жёсткий слой объединяется в единое целое его механическими свойствами. Литосфера расколота примерно на десять больших плит, на границах которых случается подавляющее число землетрясений.
     Под литосферой на глубинах от 70 до 250 км существует слой повышенной текучести – так называемая астеносфера Земли. Жёсткие литосферные плиты плавают в «астеносферном океане».
     В астеносфере температура мантийного вещества приближается к температуре его плавления. Чем глубже, тем выше давление и температура. В ядре Земли давление превышает 3600 кбар, а температура – 6000 С0.6
     Рассмотрим методы изучения внутреннего строения Земли
     При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.	
     Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому, прежде всего его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания. Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.
     Бурение скважин позволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.
     При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.
     Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25 % радиуса Земли.	
     Сейсмический метод дает возможность «проникнуть» на большие глубины. В основе этого метода лежит представление о том, что сейсмические волны (от греческого сейсмос – волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.
     Искусственно возбуждая волны на поверхности Земли путем взрывов, сейсмологи фиксируют время, за которое отраженные волны вернулись назад. Для этих целей применяется прибор-самописец – сейсмограф.
     Различают два вида сейсмических волн – продольные и поперечные. Продольные распространяются во всех средах – твердых, жидких и газообразных, а поперечные – только в твердой среде.7
     Зная, с какой скоростью распространяются волны в песках, глинах, гранитах, базальтах и других породах, по времени их прохождения «туда и обратно» можно определить глубину залегания пород, различающихся по плотности.
     
     
Глава II.
     
     2.1. О земле
     
     Правильное представление о Земле и ее форме сложилось у разных народов не сразу и не в одно время. Однако, где именно, когда, у какого народа оно было наиболее правильным, установить трудно. Уж очень мало сохранилось об этом достоверных древних документов и материальных памятников. 
     По преданию, древние индийцы представляли себе Землю в виде плоскости, лежащей на спинах слонов. До нас дошли ценные исторические сведения о том, как представляли себе Землю древние народы, жившие в бассейне рек Тигра и Евфрата, в дельте Нила и по берегам Средиземного моря — в Малой Азии и Южной Европе. Сохранились, например, письменные документы из древней Вавилонии давностью около 6 тыс. лет. Жители Вавилона, унаследовавшие свою культуру от еще более древних народов, представляли Землю в виде горы, на западном склоне которой находится Вавилония. Они знали, что к югу от Вавилона раскинулось море, а на востоке расположены горы, через которые не решались переходить. Поэтому им и казалось, что Вавилония расположена на западном склоне «мировой» горы. Гора эта окружена морем, а на море, как опрокинутая чаша, опирается твердое небо — небесный мир, где, как и на Земле, есть суша, вода и воздух. Небесная суша — это пояс 12 созвездий Зодиака: Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей, Рыбы. В каждом из созвездий Солнце ежегодно бывает приблизительно в течение месяца. По этому поясу суши движутся Солнце, Луна и пять планет. Под Землей находится бездна — ад, куда спускаются души умерших. Ночью Солнце проходит через это подземелье от западного края Земли к восточному, чтобы утром опять начать свой дневной путь по небу. Наблюдая заход Солнца за морской горизонт, люди думали, что оно уходит в море и восходит также из моря. Таким образом, в основе представлений древних вавилонян о Земле лежали наблюдения за явлениями природы, однако ограниченность знаний не позволяла правильно их объяснить. 8
     Иначе представляли себе Землю древние евреи. Они жили на равнине, и Земля казалась им равниной, на которой кое-где возвышаются горы. Особое место в мироздании евреи отводили ветрам, которые приносят с собой то дождь, то засуху. Обиталище ветров, по их мнению, находилось в нижнем поясе неба и отделяло собой Землю от небесных вод: снега, дождя и града. 
     Очень многим география обязана древним грекам, или эллинам. Этот немногочисленный народ, живший на юге Балканского и Апеннинского полуостровов Европы, создал высокую культуру. Сведения о самых древних из известных нам представлений греков о Земле мы находим в поэмах Гомера «Илиада» и «Одиссея». 
     Греческий философ Фалес (VI в. до н. э.) представлял Вселенную в виде жидкой массы, внутри которой находится большой пузырь, имеющий форму полушария. Вогнутая поверхность этого пузыря — небесный свод, а на нижней, плоской поверхности, наподобие пробки, плавает плоская Земля. Нетрудно догадаться, что представление о Земле как о плавающем острове Фалес основывал на том факте, что Греция расположена на островах. 
     Современник Фалеса — Анаксимандр представлял Землю отрезком колонны или цилиндра, на одном из оснований которого мы живем. Середину Земли занимает суша в виде большого круглого острова Ойкумены («населенной Земли»), окруженного океаном. Внутри Ойкумены находится морской бассейн, который делит ее на две приблизительно равные части: Европу и Азию. Греция же расположена в центре Европы, а город Дельфы — в центре Греции («пуп Земли»). Анаксимандр считал, что Земля — центр Вселенной. Восход Солнца и других светил на восточной стороне неба и заход их на западной он объяснял движением светил по кругу: видимый небесный свод составляет, по его мнению, половину шара, другое полушарие находится под ногами. 9
     Когда люди начали совершать далекие путешествия, постепенно стали накапливаться доказательства, что Земля не плоская, а выпуклая. Так, продвигаясь на юг, путешественники заметили, что в южной стороне неба звезды поднимаются над горизонтом пропорционально пройденному пути и над Землей появляются новые звезды, которые раньше не были видны. А в северной стороне неба, наоборот, звезды спускаются вниз к горизонту и потом совсем исчезают за ним. Выпуклость Земли подтверждалась также наблюдениями за удаляющимися кораблями. Корабль исчезает за горизонтом постепенно. На этом основании люди стали предполагать, что Земля шарообразна. 
     Знаменитый древнегреческий ученый Аристотель (IV в. до н. э.) первым использовал для доказательства шарообразности Земли наблюдения за лунными затмениями: тень от Земли, падающая на полную Луну, всегда круглая. Во время затмений Земля бывает повернута к Луне разными сторонами. Но только шар всегда отбрасывает круглую тень. 
     Наконец, выдающийся астроном древнего мира Аристарх Самосский (конец IV — первая половина III в. до н. э.) высказал мысль о том, что не Солнце вместе с планетами движется вокруг Земли, а Земля и все планеты вращаются вокруг Солнца. Однако в его распоряжении было очень мало доказательств. И прошло еще около 1700 лет, прежде чем это удалось доказать польскому ученому Копернику.
     Постепенно представления о Земле стали основываться не на умозрительном толковании отдельных явлений, а на точных расчетах и измерениях. 
     
     2.2. Земная кора
     
     Земная кора — единственная из внутренних геосфер, доступная непосредственному изучению. Поэтому знание её структуры является важнейшей основой для суждения не только об истории развития земной коры, но и Земли в целом. Из двух основных структурных подразделений — материков и океанов, — принципиально различающихся по типу земной коры, лучше изучены материки.
     Древнейшими элементами структуры материковой коры являются древние (докембрийские) платформы — обширные, тектонически мало подвижные (стабильные) массивы. Значительная часть их территории в течение геологической истории превратилась в плиты, перекрытые почти горизонтально залегающими осадочными породами (платформенным чехлом), под которым погребён древний складчатый фундамент. Последний выступает на поверхность в пределах щитов, лишённых платформенного чехла, и сложен интенсивно смятыми в складки метаморфическими породами, прорванными глубинными магматическими интрузиями преимущественно гранитного состава. Это указывает на первоначально большую тектоническую подвижность участков коры, вошедших в состав фундамента. Древние платформы разделяются и окаймляются тектонически активными геосинклинальными поясами, которые состоят из ряда геосинклинальных систем, и включают иногда относительно стабильные в и внутренние (срединные) массивы. Некоторые геосинклинальные системы в результате своего развития приобрели черты, свойственные платформам, и называемые молодыми платформами. Их фундамент, в отличие от древних (докембрийских) платформ, имеет более молодой (палеозойский или мезозойский) возраст.
     Геосинклинальные пояса характеризуются линейностью простирания (многие тысячи и десятки тысяч км), повышенной мощностью коры, контрастными вертикальными движениями большой амплитуды, интенсивным смятием горных пород в складки, вулканической активностью и высокой сейсмичностью. Платформы отличаются изометричностью очертаний, выдержанностью мощности коры (меньших значений по сравнению с геосинклинальными поясами), медленными вертикальными движениями небольшой амплитуды, слабыми проявлениями складчатости, сейсмичности и вулканизма.10
     Несравненно хуже известна современная структура океанической коры, по поводу которой во многом приходится ограничиваться догадками. Обширные относительно ровные пространства океанического дна, отличающиеся слабым проявлением вулканизма, слабой сейсмичностью и, по-видимому, малыми скоростями вертикальных движений земной коры, по аналогии со стабильными структурами материков называют океаническими платформами или талассократонами. Им противостоят как тектонически подвижные зоны океанические рифовые пояса — совершенно своеобразные глобального значения структуры растяжения, резко отличные от геосинклинальных складчатых систем материков. Они протягиваются через все океаны в виде срединноокеанических хребтов, которым свойственны интенсивный вулканизм, большая сейсмичность и повышенные значения идущего из недр теплового потока. Хребты осложнены продольными разломами, по которым развита система глубоких рифовых впадин.
     Что касается структурных соотношений океанической и материковой коры, то можно выделить два принципиально отличных их типа. Первый, или атлантический, свойствен большей части Атлантического, Индийского и Северному Ледовитому океанам. Здесь граница материка и океана сечёт вкрест структуры материковой коры, а переход от нее к океанической резкий, осуществляющийся путём быстрого выклинивания «гранитного» слоя в зоне материкового склона. Второй, или тихоокеанский, тип свойствен периферии Тихого океана, Карибскому и Южногебридскому районам Атлантического и индонезийскому побережью Индийского океанов. Ему присуще параллельное краю континента простирание мезозойских и кайнозойских складчатых систем и современных геосинклиналей, как бы огибающих океаническую впадину, а также наличие более или менее широкой переходной зоны с промежуточным или мозаичным строением коры. В составе переходной зоны выделяются геоантиклинальные поднятия, выраженные в современном рельефе гористыми архипелагами островных дуг, имеющих в плане характерную форму гирлянд. С ними сопряжены геосинклинальные прогибы в виде глубоководных впадин окраинных морей и узких длинных океанических желобов	(рис.3).
     Очень часто эти особенности строения побережий Тихого океана толкуются как свидетельства его значительной древности. В то же время никто не сомневается в относительной молодости океанов атлантического типа. Данные исторической геологии однозначно указывают, что ещё в конце палеозойской эры материки Южной Америки, Африки, Австралии и Антарктиды, вместе с Мадагаскаром и древней Индостанской платформой, составляли единый континентальный массив Гондваны. Только в течение мезозоя он разделился на части, и возникли современные впадины Индийского и Атлантического океанов.11
     С виду земная кора только кажется неподвижной, абсолютно устойчивой. На самом же деле она совершает непрерывные и разнообразные движения. Некоторые из них происходят очень медленно и не воспринимаются органами чувств человека, другие, например землетрясения, носят обвальный, разрушительный характер. Какие же силы приводят в движение земную кору?
     Известно, что на границе мантии и литосферы температура превышает 1500 °C. При этой температуре материя должна либо расплавиться, либо превратиться в газ. При переходе твердых тел в жидкое или газообразное состояние объем их должен увеличиваться. Однако этого не происходит, так как перегретые породы находятся под давлением вышележащих слоев литосферы. Возникает эффект «парового котла», когда стремящаяся расшириться материя давит на литосферу, приводя ее в движение вместе с земной корой. При этом, чем выше температура, тем сильнее давление и тем активнее движется литосфера. Особенно сильные очаги давления возникают в тех местах верхней мантии, где концентрируются радиоактивные элементы, распад которых разогревает слагающие породы до еще более высоких температур. Движения земной коры под действием внутренних сил Земли называют тектоническими. Эти движения подразделяют на колебательные, складкообразовательные и разрывные.12
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     2.3. Мантия Земли
     
     Мантия Земли, оболочка «твердой» Земли, расположенная между земной корой и ядром Земли. Занимает 83% Земли (без атмосферы) по объему и 67% по массе. От земной коры ее отделяет поверхность Мохоровичича, на которой скорость продольных сейсмических волн при переходе из коры в Мантию Земли возрастает скачком с 6,7–7,6 до 7,9–8,2 км/сек; от ядра Земли мантию отделяет поверхность (на глубине около 2900 км), на которой скорость сейсмических волн падает с 13,6 до 8,1 км/сек. Мантия Земли делится на нижнюю и верхнюю мантию. Последняя, в свою очередь, делится (сверху вниз) на субстрат, слой Гутенберга (слой пониженных скоростей сейсмических волн) и слой Голицына (иногда называется средней мантией). У подошвы мантии Земли выделяется слой толщиной менее 100 км, в котором скорости сейсмических волн не растут с глубиной или даже слегка понижаются.13
     Предполагается, что мантия Земли слагается теми химическими элементами, которые во время образования Земли находились в твердом состоянии или входили в состав твердых химических соединений. Из этих элементов преобладают: О, Si, Mg, Fe. Согласно современным представлениям, состав мантии Земли считается близким к составу каменных метеоритов. Из каменных метеоритов наиболее близкий к мантии Земли состав имеют хондриты. Предполагают, что непосредственными образцами вещества мантии являются обломки пород среди базальтовой лавы, вынесенные на поверхность Земли; их находят также вместе с алмазами в трубках взрыва. Считают также, что обломки пород, поднятые драгой со дна рифтов Срединно-океанических хребтов, представляют собой вещество мантии.
     Образцы самой верхней части мантии Земли состоят преимущественно из пород ультраосновного (перидотит и пироксенит) и основного (эклогит) состава. Обычно считается, что мантия Земли почти полностью сложена оливином ((Mg, Fe)2SiO4), в котором сильно преобладает магниевая компонента (форстерит), но с глубиной, быть может, возрастает доля железной составной части (фаялита). Австралийский петрограф Рингвуд предполагает, что мантия Земли сложена гипотетической породой, которую он назвал пиролитом и которая по составу соответствует смеси из 3 частей периодита и 1 части базальта. Теоретические расчеты показывают, что в нижней мантии Земли минералы должны распадаться на окислы. К началу 70-х годов 20 века появились также данные, указывающие на наличие в мантии Земли горизонтальных неоднородностей.14
     Характерной чертой мантии Земли являются, по-видимому, фазовые переходы. Экспериментально установлено, что в оливине под большим давлением изменяется структура кристаллической решетки, появляется более плотная упаковка атомов, так что объем минерала заметно уменьшается. В кварце такой фазовый переход наблюдается дважды по мере роста давления; самая плотная модификация на 65°C плотнее обычного кварца. Такие фазовые переходы считаются главной причиной того, что в слое Голицына скорости сейсмических волн очень быстро возрастают с глубиной (рис.4).
     Несомненно, что земная кора выделилась из мантии Земли; процесс дифференциации мантии Земли продолжается и сейчас. Есть предположение, что и земное ядро разрастается за счет мантии Земли. Процессы в земной коре и мантии Земли тесно связаны; в частности, энергия для тектонических движений земной коры, по-видимому, поступает из мантии Земли.15
     
2.4. Ядро Земли
     
     Ядро Земли – внутренняя геосфера Земли со средним диаметром 3470 км, расположенная на средней глубине около 2900 км. Делится на твердое внутреннее ядро диаметром около 1300 км и жидкое внешнее ядро мощностью около 2200 км, между которыми иногда выделяется 250 км переходная зона жидкости повышенной плотности. Вероятно состоит из железо-никелевого сплава с примесью других сидерофильни элементов. Температура в центре ядра Земли достигает 5000 ° C, плотность около 12,5 т / м , давление до 361 ГПа. Масса ядра – 1932 x 10 24 кг. 16
     Сведений о ядре очень мало – вся информация получена косвенными геофизическими или геохимическими методами, образцы вещества ядра не 
доступны, и вряд ли будут получены в ближайшем будущем(рис.5).
     Одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она гораздо больше, чем плотность характерна для пород, выходящих на земную поверхность. 
     Существование ядра было доказано в 1897 году немецким сейсмологом Э. Вихерт за наличия эффекта так называемой «сейсмической тени». В 1910 году за резким скачком скоростей продольных сейсмических волн американским геофизиком Б. Гутенбергом была определена глубина залегания его поверхности – 2900 км. 
     Основатель геохимии В. М. Гольдшмидт (нем. Victor Moritz Goldschmidt (1888-1947) в 1922 году предположил, что ядро образовалось путем гравитационной дифференциации первичной Земли в период ее роста или в более поздние периоды. Альтернативную гипотезу, что железное ядро возникло еще в протопланетного облака, развивали немецкий ученый А. Эйкен (1944), американский ученый Э. Орован и советский ученый А. П. Виноградов (60-70-е годы). 
     В 1941 году Кун и Ритман, основываясь на гипотезе идентичности химического состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядре состоит из металлического водорода. Эта гипотеза не прошла экспериментальную проверку. Эксперименты с ударного сжатия показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако эта гипотеза позже была адаптирована для объяснения строения планет-гигантов – Юпитера, Сатурна и т.д. Современной наукой вважааеться, которые магнитное поле возникает именно в металлическом водородном ядре. 
     Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав – на границе ядро-мантия при давлении 1,36 MБар мантийные силикаты переходят в жидкую 
металлическую фазу (металлизированное силикатное ядро). 17
     Состав ядра может быть оценен лишь из нескольких источников. 
Наиболее близкими веществу ядра считаются образцы железных метеоритов, которые являются фрагментами ядер астероидов и протопланет. Однако железные метеориты не эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, т.е. при других физико-химических параметрах. 
     Из данных гравиметрии известна плотность ядра, ограничивающий дополнительно компонентный состав. Так как плотность ядра примерно на 10% меньше, чем плотность сплавов железо-никель, то соответственно ядро Земли содержит больше легких элементов, чем железные метеориты. 
     Исходя из геохимических соображений, рассчитывая первичный состав Земли и вычисляя долю элементов, находящихся в других геосферах, можно построить приблизительную оценку состав ядра. Помощь в таких вычислениях оказывают высокотемпературные и високобарични эксперименты по распределению элементов между расплавленным железом и силикатными фазами. 
     Образование ядра – ключевой момент истории Земли. Для определения возраста этого события были использованы следующие соображения: 
     В веществе, из которого образовалась Земля, был изотоп 182 Hf, который имеет период полураспада 9 млн лет и превращается в изотоп 182 W. Гафний являются литофильных элементов, т.е. при разделении первичного вещества Земли на силикатный и металлическую фазы он преимущественно сконцентрировался в силикатной фазе, а вольфрам – сидерофильных элемент, и сконцентрировался в металлической фазе. В металлическом ядре Земли соотношение Hf / W близко к нулю, тогда как в силикатной оболочке это.......................
Для получения полной версии работы нажмите на кнопку "Узнать цену"
Узнать цену Каталог работ

Похожие работы:

Отзывы

Спасибо большое за помощь. У Вас самые лучшие цены и высокое качество услуг.

Далее
Узнать цену Вашем городе
Выбор города
Принимаем к оплате
Информация
Нет времени для личного визита?

Оформляйте заявки через форму Бланк заказа и оплачивайте наши услуги через терминалы в салонах связи «Связной» и др. Платежи зачисляются мгновенно. Теперь возможна онлайн оплата! Сэкономьте Ваше время!

Рекламодателям и партнерам

Баннеры на нашем сайте – это реальный способ повысить объемы Ваших продаж.
Ежедневная аудитория наших общеобразовательных ресурсов составляет более 10000 человек. По вопросам размещения обращайтесь по контактному телефону в городе Москве 8 (495) 642-47-44